scholarly journals Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods

2020 ◽  
Author(s):  
Monsimet Jérémy ◽  
Devineau Olivier ◽  
Pétillon Julien ◽  
Lafage Denis

ABSTRACTFishing spiders (Dolomedes spp.) make an interesting model to predict the impact of global changes because they are generalist, opportunistic predators, whose distribution is driven mostly by abiotic factors. Yet, the two European species are expected to react differently to forthcoming environmental changes, because of habitat specialization and initial range. We used an original combination of habitat and dispersal data to revisit these predictions under various climatic scenarios. We used the future range of suitable habitat, predicted with habitat variables only, as a base layer to further predict the range or reachable habitat by accounting for both dispersal ability and landscape connectivity. Our results confirm the northward shift in range and indicate that the area of co-occurrences should also increase. However, reachable habitat should expand less than suitable habitat, especially when accounting for landscape connectivity. In addition, the potential range expansion was further limited for the red-listed D. plantarius, which is more habitat-specialist and has a lower ability to disperse. This study highlights the importance of looking beyond habitat variables to produce more accurate predictions for the future of arthropods populations.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jérémy Monsimet ◽  
Olivier Devineau ◽  
Julien Pétillon ◽  
Denis Lafage

Abstract Fishing spiders (Dolomedes spp.) make an interesting model to predict the impact of global changes because they are generalist, opportunistic predators, whose distribution is driven mostly by abiotic factors. Yet, the two European species are expected to react differently to forthcoming environmental changes, because of habitat specialization and initial range. We used an original combination of habitat and dispersal data to revisit these predictions under various climatic scenarios. We used the future range of suitable habitat, predicted with habitat variables only, as a base layer to further predict the range or reachable habitat by accounting for both dispersal ability and landscape connectivity. Our results confirm the northward shift in range and indicate that the area of co-occurrences should also increase. However, reachable habitat should expand less than suitable habitat, especially when accounting for landscape connectivity. In addition, the potential range expansion was further limited for the red-listed D. plantarius, which is more of a habitat specialist and has a lower ability to disperse. This study highlights the importance of looking beyond habitat variables to produce more accurate predictions for the future of arthropods populations.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


Oryx ◽  
1991 ◽  
Vol 25 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Mark Simmonds

The European seal epidemic killed approximately 60 per cent of harbour or common seals Phoca vitulina in the colonies of the Wadden Sea, Kattegat–Skagerrak and the Norfolk Wash. High mortality was also observed elsewhere. The die-off peaked in 1988 and few affected seals have been reported subsequently. But what of the future? Is the marine environment still able to support healthy seal populations; is there enough suitable habitat for them; is there enough food; what is the impact of pollution on them; and why has no new legislation been implemented to protect them?


Diversity ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 312
Author(s):  
Alexandra Evans ◽  
Sam Janssens ◽  
Hans Jacquemyn

Long-term monitoring programs and population demographic models have shown that the population dynamics of orchids are to a large extent dependent on prevailing weather conditions, suggesting that the changes in climatic conditions can have far reaching effects on the population dynamics and hence the distribution of orchids. Although a better understanding of the effects of climate change on the distribution of plants has become increasingly important during the final years, only a few studies have investigated the effects of changing temperature and precipitation on the distribution of orchids. In this study, we investigated the impact of climate change on the distribution of four terrestrial orchid species (Orchis anthropophora, Orchis militaris, Orchis purpurea and Orchis simia). Using bioclimatic data for current and future climate scenarios, habitat suitability, range shifts and the impact of different abiotic factors on the range of each species were modelled using Maxent. The results revealed an increase in suitable habitat area for O. anthropophora, O. purpurea and O. simia under each RCP (Representative Concentration Pathway) scenario, while a decrease was observed for O. militaris. Furthermore, all four of the orchids showed a shift to higher latitudes under the three RCPs leading to a significant range extension under mild climate change. Under severe climate change, a significant decline in the distribution area at the warm edge of their distributions was observed. Overall, these results show that mild climate change may be beneficial for the studied orchid species and lead to range expansion. However, continued warming may yet prove detrimental, as all species also showed pronounced declines at lower latitudes when temperature increases were larger than 4 °C.


2006 ◽  
Vol 1 (3) ◽  
pp. 412-429 ◽  
Author(s):  
Fred Jopp

AbstractAlthough the impact of vegetation and other environmental factors on the distribution of terrestrial invertebrates has been known since the 1950s, basic knowledge about their interaction with micro-landscape elements is lacking. In experimental model systems, the impact of varying local spatial resistance (LSR) on the distribution of Tenebrio molitor individuals was analysed in the laboratory. In the setups, LSR led to a reduction of the average distance covered (move step length) and a reduction of the velocity (the maximum speed ranging from 36.1 in the control groups to 20.4 [mm*step−1] in areas with a maximum LSR). Also, the covered distances per individual varied among three groups, from 2.97 m in the control to 1.11 m in areas with medium LSR to 0.88 m in areas with maximum LSR. Thus, in areas with LSR, animals were forced by their habitats to perform shorter move steps on average and covered less distance. The distance covered (i.e., dispersal performances) were not correlated with such factors as sex, weight and length of the Tenebrio individuals from other studies. Analysis of the data for net squared displacement indicated that the dispersal of the beetles did not follow a diffusion process. The move step directions of the dispersal data showed pronounced autocorrelation, which means that in contrast to other findings, the individuals were not performing a random walk. This effect was strongly dependent on the temporal resolution (i.e. grain), and was also influenced by the experimental conditions. The entire array of data showed high variability among the sub-groups (as well as many outliers), revealing nonparametric characteristics. The results showed that the specific physical configuration of suitable habitat for Tenebrio is one of the key indicators of landscape connectivity on the micro-scale.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 978
Author(s):  
Taoufik Saleh Ksiksi ◽  
Remya K. ◽  
Mohamed T. Mousa ◽  
Shima K. Al-Badi ◽  
Salama K. Al Kaabi ◽  
...  

Background: The impact of climate change on selected plant species from the hyper-arid landscape of United Arab Emirates (UAE) was assessed through modeling of their habitat suitability and distribution. Calotropis procera, Prosopis cineraria and Ziziphus spina-christi were used for this study. The specific objectives of this study were to identify the current and future (for 2050s and 2070s) suitable habitats distribution using MaxEnt, an Ecological Envelope Model. Methods: The adopted method consists of extraction of current and future bioclimatic variables together with their land use cover and elevation for the study area. MaxEnt species distribution model was then used to simulate the distribution of the selected species. The projections are simulated for the current date, the 2050s and 2070s using Community Climate System Model version 4 with representative concentration pathway RCP4.5. Results: The current distribution model of all three species evolved with a high suitable habitat towards the north eastern part of the country. For C. procera, an area of 1775 km2 is modeled under highly suitable habitat for the current year, while it is expected to increase for both 2050s and 2070s. The current high suitability of P. cinararia was around an area of 1335 km2 and the future projection revealed an increase of high suitability habitats. Z. spina-christi showed a potential area of 5083 km2 under high suitability and it might increase in the future. Conclusions: Precipitation of coldest quarter (BIO19) had the maximum contribution for all the three species under investigation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3526
Author(s):  
Yining Ma ◽  
Xiaoling Lu ◽  
Kaiwei Li ◽  
Chunyi Wang ◽  
Ari Guna ◽  
...  

Actinidia arguta (Siebold and Zucc.) Planch.ex Miq, called “hardy kiwifruit”, “baby kiwi” or “kiwi berry”, has a unique taste, is rich in nutrients and has high economic value and broad market prospects. Active research on the potential geographic distribution of A. arguta in China aims to provide a reference basis for its resource investigation, conservation, development and utilization and introduction of cultivation. In this study, the Maxent model was used to combine climatic factors, soil factors and geographical factors (elevation, slope and aspect) to predict the current and future (2041–2060 and 2081–2100) potential distribution of A. arguta and to analyze the impact of climate change on it. The results showed that the suitable distribution range of A. arguta in China was 23–43 N and 100–125 E, with a total area of about 3.4451 × 106 km2. The highly suitable area of A. arguta was mainly concentrated in the middle and low mountain areas of the south of Shaanxi, the east of Sichuan, the middle and west of Guizhou and the west of Yunnan, presenting a circular distribution. The Jackknife test was used to calculate the main environmental factors affecting the distribution of A. arguta. The first four main factors were annual mean temperature (bio_1), precipitation of the warmest quarter (bio_18), elevation (ELE) and mean temperature of the warmest quarter (bio_10), which provided a contribution up to 81.7%. Under the scenarios of three representative concentrations (SSP1_2.6, SSP2_4.5 and SSP5_8.5) in the future, the area of low and moderate suitable habitat decreased, while the area of highly suitable habitat increased. The migration direction of the centroid in the highly suitable habitat moved to the southwest in the future scenario period.


Author(s):  
Priyastiwi Priyastiwi

The purpose of this article is to provide the basic model of Hofstede and Grays’ cultural values that relates the Hofstede’s cultural dimensions and Gray‘s accounting value. This article reviews some studies that prove the model and develop the research in the future. There are some evidences that link the Hofstede’s cultural values studies with the auditor’s judgment and decisions by developing a framework that categorizes the auditor’s judgments and decisions are most likely influenced by cross-cultural differences. The categories include risk assessment, risk decisions and ethical judgments. Understanding the impact of cultural factors on the practice of accounting and financial disclosure is important to achieve the harmonization of international accounting. Deep understanding about how the local values may affect the accounting practices and their impacts on the financial disclosure are important to ensure the international comparability of financial reporting. Gray’s framework (1988) expects how the culture may affect accounting practices at the national level. One area of the future studies will examine the impact of cultural dimensions to the values of accounting, auditing and decision making. Key word : Motivation, leadership style, job satisfaction, performance


Sign in / Sign up

Export Citation Format

Share Document