scholarly journals First Clinical Use of Lenzilumab to Neutralize GM-CSF in Patients with Severe and Critical COVID-19 Pneumonia

Author(s):  
Zelalem Temesgen ◽  
Mariam Assi ◽  
Paschalis Vergidis ◽  
Stacey A. Rizza ◽  
Philippe R. Bauer ◽  
...  

ABSTRACTBackgroundIn COVID-19, high levels of granulocyte macrophage-colony stimulating factor (GM-CSF) and inflammatory myeloid cells correlate with disease severity, cytokine storm, and respiratory failure. With this rationale, we used lenzilumab, an anti-human GM-CSF monoclonal antibody, to treat patients with severe and critical COVID-19 pneumonia.MethodsHospitalized patients with COVID-19 pneumonia and risk factors for poor outcomes were treated with lenzilumab 600 mg intravenously for three doses through an emergency single-use IND application. Patient characteristics, clinical and laboratory outcomes, and adverse events were recorded. All patients receiving lenzilumab through May 1, 2020 were included in this report.ResultsTwelve patients were treated with lenzilumab. Clinical improvement was observed in 11 out of 12 (92%), with a median time to discharge of 5 days. There was a significant improvement in oxygenation: The proportion of patients with SpO2/FiO2 < 315 at the end of observation was 8% vs. compared to 67% at baseline (p=0.00015). A significant improvement in mean CRP and IL-6 values on day 3 following lenzilumab administration was also observed (137.3 mg/L vs 51.2 mg/L, p = 0.040; 26.8 pg/mL vs 16.1 pg/mL, p = 0.035; respectively). Cytokine analysis showed a reduction in inflammatory myeloid cells two days after lenzilumab treatment. There were no treatment-emergent adverse events attributable to lenzilumab, and no mortality in this cohort of patients with severe and critical COVID-19 pneumonia.ConclusionsIn high-risk COVID-19 patients with severe and critical pneumonia, GM-CSF neutralization with lenzilumab was safe and associated with improved clinical outcomes, oxygen requirement, and cytokine storm.

Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

Abstract We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 479-486 ◽  
Author(s):  
KJ Till ◽  
J Burthem ◽  
A Lopez ◽  
JC Cawley

Granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors (GMR) are expressed on myeloid cells throughout their maturational sequence. During myelopoiesis, GM-CSF induces the proliferation of precursors and has multiple effects on more mature cells; such effects include induction of maturation and priming for subsequent stimulation. GMR is expressed on a range of other cell types including acute leukemic blasts of myeloid and lymphoid lineage, but has been little studied on more mature lymphoid cells. Using sensitive triple-layer immunophenotypic techniques, we show here that both the alpha and beta c chains of the GMR are expressed on hairy cells (HCs) and myelomatous plasma cells (PCs), but not on chronic lymphocytic leukemia (CLL) or prolymphocytic leukemia (PLL) lymphocytes. The receptor was demonstrable on normal PCs in tonsil, but not on either activated or resting tonsillar B cells or on circulating normal B lymphocytes. The expression of the receptor is therefore stage specific, rather than a feature of activation. Perhaps, surprisingly, in view of its effects on myeloid cells, GM-CSF did not stimulate the proliferation or differentiation of HCs and did not protect them from apoptosis. However, the cytokine had a profound effect on the interaction of the HC with its environment. Thus, the cytokine caused a major cytoskeletal reorganization resulting in the inhibition of motility and loss of adhesion to cellular and matrix ligands. These studies indicate the importance of GM-CSF outside myelopoiesis and demonstrate a previously unrecognized stage specific role for the cytokine in B-cell biology. Taken together with our previous report that M-CSF enhances B-cell motility, the present findings indicate that myeloid growth factors act in concert to facilitate the controlled migration of certain B cells into and within tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jani Lappalainen ◽  
Nicolas Yeung ◽  
Su D. Nguyen ◽  
Matti Jauhiainen ◽  
Petri T. Kovanen ◽  
...  

AbstractIn atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte–macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Luis Carvajal ◽  
Luciana Gneo ◽  
Carmela De Santo ◽  
Matt Perez ◽  
Tracy Garron ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) accumulate in the blood and tumor microenvironment (TME) and suppress anti-tumor immune responses.1 Cancer cells express the granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives MDSC differentiation and function.2 3 4 It is upregulated in several cancers, including mesothelioma, pancreatic and colorectal, and it is linked to higher levels of intra-tumoral MDSCs and poorer overall survival.2 4 5 In animal models, knockdown of GM-CSF in pancreatic epithelium or pancreatic mesenchymal stem cells inhibits tumorigenesis, reduces intra-tumor MDSCs and enhances CD8+ T cell accumulation.6 7 8 Therefore, targeting the GM-CSF receptor alpha (GM-CSFRα) on MDSCs is an attractive strategy to restore anti-tumor immunity. Mavrilimumab is a clinical stage fully human monoclonal antibody that blocks GM-CSFRα. It has demonstrated efficacy and acceptable safety profile in patients with rheumatoid arthritis, and it’s currently undergoing investigation in phase II studies in giant cell arteritis and in patients with severe COVID-19 pneumonia and hyper-inflammation (NCT03827018, NCT04397497, respectively). The present study investigates its potential as a therapeutic strategy to target MDSCs in the TME as an adjuvant to immunotherapy.MethodsCancer cell supernatants were collected when cells reached confluency. Human GM-CSF was measured by ELISA. Healthy donor CD14+ monocytes were incubated (± mavrilimumab) with cancer cell supernatants for either 3 or 6 days followed by phenotypic analysis (CD14, CD33, HLA-DR, CD11b, CD206, CD80, PD-L1, Arginase-1) by flow cytometry. On day 3, autologous CD3+ T cells were stimulated with CD3/CD28 and IL-2 and co-cultured with putative MDSCs for 5 days. T-cell proliferation was evaluated by measuring carboxyfluorescein succinimidyl ester (CFSE) dilution in CD4+ and CD8+ T cells by flow cytometry.ResultsGM-CSF is expressed in the supernatant of cancer cell lines (HCT116, SW-480, Panc-1, Capan-1). Human monocytes cultured with conditioned medium from colorectal carcinoma (SW-480) or pancreatic adenocarcinoma (Capan-1) show downregulation of HLA-DR, increased expression of PD-L1, Arg-1, CD206, and can suppress T-cell proliferation in-vitro. Similarly, peripheral blood monocytes purified from pancreatic cancer patients suppress T-cell proliferation ex-vivo. Notably, Mavrilimumab inhibits the polarization of healthy donor monocytes to M-MDSCs and restores T-cell proliferation.ConclusionsTargeting of GM-CSFRα with mavrilimumab may alleviate the pro-tumorigenic and immunosuppressive functions of MDSCs in the TME. Future clinical studies should evaluate whether targeting of the GM-CSFRα in combination with immune checkpoint inhibitors is a viable therapeutic option to bolster their efficacy.Ethics ApprovalThe study was approved by the Institute of Immunology and Immunotherapy, University of Birmingham, UK Ethics Board. Healthy volunteer human material was obtained from commercial sources and approved by Stemexpress Institutional Review Board (IRB).ReferencesLaw AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9(3):561.Khanna S, Graef S, Mussai F, et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018;24(12):2859–2872.Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010;40(1):22–35.Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015;75(13):2629–2640.Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017;7(1):8265.Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21(6):822–835.Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21(6):836–847.Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 2016;6(8):886–899.


2021 ◽  
Vol 14 (5) ◽  
pp. 459
Author(s):  
Mariya Pykhtina ◽  
Svetlana Miroshnichenko ◽  
Vladimir Romanov ◽  
Antonina Grazhdantseva ◽  
Galina Kochneva ◽  
...  

In this study, two strains of the yeast P. pastoris were constructed, one of which produced authentic recombinant human granulocyte-macrophage colony-stimulating factor (ryGM-CSF), and the other was a chimera consisting of ryGM-CSF genetically fused with mature human apolipoprotein A-I (ApoA-I) (ryGM-CSF-ApoA-I). Both forms of the cytokine were secreted into the culture medium. The proteins’ yield during cultivation in flasks was 100 and 60 mg/L for ryGM-CSF and ryGM-CSF-ApoA-I, respectively. Both forms of recombinant GM-CSF stimulated the proliferation of human TF-1 erythroleukemia cells; however, the amount of chimera required was 10-fold that of authentic GM-CSF to induce a similar proliferative effect. RyGM-CSF exhibited a 2-fold proliferative effect on BFU-E (burst-forming units—erythroid) at a concentration 1.7 fold less than non-glycosylated E. coli-derived GM-CSF. The chimera together with authentic ryGM-CSF increased the number of both erythroid precursors and BMC granulocytes after 48 h of incubation of human bone marrow cells (BMCs). In addition, the chimeric form of ryGM-CSF was more effective at increasing the viability of the total amount of BMCs, decreasing apoptosis compared to the authentic form. ryGM-CSF-ApoA-I normalized the proliferation, maturation, and segmentation of neutrophils within the physiological norm, preserving the pool of blast cells under conditions of impaired granulopoiesis. The chimera form of GM-CSF exhibited the properties of a multilinear growth factor, modulating the activity of GM-CSF and, perhaps, it may be more suitable for the normalization of granulopoiesis.


Neonatology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Verena Schulte ◽  
Alexandra Sipol ◽  
Stefan Burdach ◽  
Esther Rieger-Fackeldey

<b><i>Background:</i></b> The granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays an important role in surfactant homeostasis. β<sub>C</sub> is a subunit of the GM-CSF receptor (GM-CSF-R), and its activation mediates surfactant catabolism in the lung. β<sub>IT</sub> is a physiological, truncated isoform of β<sub>C</sub> and is known to act as physiological inhibitor of β<sub>C</sub>. <b><i>Objective:</i></b> The aim of this study was to determine the ratio of β<sub>IT</sub> and β<sub>C</sub> in the peripheral blood of newborns and its association with the degree of respiratory failure at birth. <b><i>Methods:</i></b> We conducted a prospective cohort study in newborns with various degrees of respiratory impairment at birth. Respiratory status was assessed by a score ranging from no respiratory impairment (0) to invasive respiratory support (3). β<sub>IT</sub> and β<sub>C</sub> expression were determined in peripheral blood cells by real-time PCR. β<sub>IT</sub> expression, defined as the ratio of β<sub>IT</sub> and β<sub>C</sub>, was correlated with the respiratory score. <b><i>Results:</i></b> β<sub>IT</sub> expression was found in all 59 recruited newborns with a trend toward higher β<sub>IT</sub> in respiratory ill (score 2, 3) newborns than respiratory healthy newborns ([score 0, 1]; <i>p</i> = 0.066). Seriously ill newborns (score 3) had significantly higher β<sub>IT</sub> than healthy newborns ([score 0], <i>p</i> = 0.010). Healthy preterm infants had significantly higher β<sub>IT</sub> expression than healthy term infants (<i>p</i> = 0.019). <b><i>Conclusions:</i></b> β<sub>IT</sub> is expressed in newborns with higher expression in respiratory ill than respiratory healthy newborns. We hypothesize that β<sub>IT</sub> may have a protective effect in postnatal pulmonary adaptation acting as a physiological inhibitor of β<sub>C</sub> and, therefore, maintaining surfactant in respiratory ill newborns.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1190-1198 ◽  
Author(s):  
SC Guba ◽  
CI Sartor ◽  
LR Gottschalk ◽  
YH Jing ◽  
T Mulligan ◽  
...  

Abstract Bone marrow (BM) stromal fibroblasts produce hematopoietic growth factors (HGFs) in response to inflammatory mediators such as tumor necrosis factor-alpha or interleukin-1 alpha (IL-1 alpha). In the absence of such inflammatory stimuli, production of HGFs by BM stromal cells has been problematic and controversial. In vivo, however, basal hematopoiesis maintains blood counts within a normal homeostatic range even in the absence of inflammation, and HGFs are required for progenitor cell differentiation in vitro. To better ascertain the contribution of BM stromal fibroblasts to basal hematopoiesis, we therefore studied HGF production in quiescent BM stromal fibroblasts by three sensitive assays: serum-free bioassay, enzyme-linked immunosorbent assay, and reverse transcriptase polymerase chain reaction. Stromal fibroblasts were cultured in the presence or absence of normal human serum to determine if serum factor(s) present in the noninflammatory (basal) state induce secretion of HGFs. Human serum was found to induce or enhance transcription and secretion of granulocyte- macrophage colony-stimulating factor (GM-CSF) and enhance secretion of constitutively expressed IL-6. In contrast, no secretion of either granulocyte-CSF (G-CSF) or IL-3 was found. These data indicate that factors in normal human serum are active in enhancing GM-CSF and IL-6 production by stromal fibroblasts and suggest that these growth factors contribute to the maintainance of normal, basal hematopoiesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document