scholarly journals Whole Genome Sequencing of 5 Tibetan Sheep Breeds Identifies Selective Signatures to Adaptability at Different High-Altitude Areas in Qinghai-Tibetan Plateau

2020 ◽  
Author(s):  
Lei-Lei Li ◽  
Shi-Ke Ma ◽  
Wei Peng ◽  
You-Gui Fang ◽  
Hong-Yun Fu ◽  
...  

ABSTRACTTibetan sheep is one of primitive Chinese sheep breeds, which achieved the divergence about 2500 years ago in Qinghai plateau region. According to different geographic conditions, especially altitudes, Tibetan sheep evolved into different breeds. In this study, we performed pooled whole genome resequencing of 125 individuals from 5 representative Tibetan sheep breeds. Comparative genomic analysis showed that they can be divided into different clades with a close genetic relationship. However, some genes with common selective regions were enriched for hypoxic adaptability in different breeds living at higher altitude, including GHR, BMP15 and CPLANE1. Furthermore, breed-specific selective regions about physical characteristics, especially wool growth, were found in genes such as BSND, USP24, NCAPG and LCORL. This study could contribute to our understanding about trait formation and offer a reference for breeding of Tibetan sheep.

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Lei-Lei Li ◽  
Shi-Ke Ma ◽  
Wei Peng ◽  
You-Gui Fang ◽  
Hai-Rui Duo ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1542
Author(s):  
Héctor Marina ◽  
Beatriz Gutiérrez-Gil ◽  
Cristina Esteban-Blanco ◽  
Aroa Suárez-Vega ◽  
Rocío Pelayo ◽  
...  

Different studies have shown that polymorphisms in the sequence of genes coding for the milk proteins and milk fatty acids are associated with milk composition traits as well as with cheese-making traits. However, the lack of coincident results across sheep populations has prevented the use of this information in sheep breeding programs. The main objective of this study was to exploit the information derived from a total of 175 whole genome resequencing (WGR) datasets from 43 domestic sheep breeds and three wild sheep to evaluate the genetic diversity of 24 candidate genes for milk composition and identify genetic variants with a potential phenotypic effect. The functional annotation of the identified variants highlighted five single nucleotide polymorphisms (SNPs) predicted to have a high impact on the protein function and 42 missense SNPs with a putative deleterious effect. When comparing the allelic frequencies at these 47 polymorphisms with relevant functional effects between the genomes of Assaf and Churra sheep breeds, two missense deleterious variants were identified as potential markers associated to the milk composition differences found between the Churra and Assaf: XDH:92215727C>T and LALBA:137390760T>C. Future research is required to confirm the effect of the potential functionally relevant variants identified in the present study on milk composition and cheese-making traits.


Author(s):  
Soumya Prakash Das ◽  
Rahul Singh Jasrotia ◽  
Debal Deb ◽  
Mir Asif Iquebal ◽  
Sarika Jaiswal ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
James Sweet-Jones ◽  
Vasileios Panagiotis Lenis ◽  
Andrey A. Yurchenko ◽  
Nikolay S. Yudin ◽  
Martin Swain ◽  
...  

BackgroundAdvances in genetic tools applied to livestock breeding has prompted research into the previously neglected breeds adapted to harsh local environments. One such group is the Welsh mountain sheep breeds, which can be farmed at altitudes of 300 m above sea level but are considered to have a low productive value because of their poor wool quality and small carcass size. This is contrary to the lowland breeds which are more suited to wool and meat production qualities, but do not fare well on upland pasture. Herein, medium-density genotyping data from 317 individuals representing 15 Welsh sheep breeds were used alongside the whole-genome resequencing data of 14 breeds from the same set to scan for the signatures of selection and candidate genetic variants using haplotype- and SNP-based approaches.ResultsHaplotype-based selection scan performed on the genotyping data pointed to a strong selection in the regions of GBA3, PPARGC1A, APOB, and PPP1R16B genes in the upland breeds, and RNF24, PANK2, and MUC15 in the lowland breeds. SNP-based selection scan performed on the resequencing data pointed to the missense mutations under putative selection relating to a local adaptation in the upland breeds with functions such as angiogenesis (VASH1), anti-oxidation (RWDD1), cell stress (HSPA5), membrane transport (ABCA13 and SLC22A7), and insulin signaling (PTPN1 and GIGFY1). By contrast, genes containing candidate missense mutations in the lowland breeds are related to cell cycle (CDK5RAP2), cell adhesion (CDHR3), and coat color (MC1R).ConclusionWe found new variants in genes with potentially functional consequences to the adaptation of local sheep to their environments in Wales. Knowledge of these variations is important for improving the adaptative qualities of UK and world sheep breeds through a marker-assisted selection.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yan Deng ◽  
Shenqiang Hu ◽  
Chenglong Luo ◽  
Qingyuan Ouyang ◽  
Li Li ◽  
...  

Abstract Background During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. Results In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. Conclusions This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luciano Calderón ◽  
Nuria Mauri ◽  
Claudio Muñoz ◽  
Pablo Carbonell-Bejerano ◽  
Laura Bree ◽  
...  

AbstractGrapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection. Malbec is a cultivar that is well-appreciated for the elaboration of red wine. It originated in Southwestern France and was introduced in Argentina during the 1850s. In order to study the clonal genetic diversity of Malbec grapevines, we generated whole-genome resequencing data for four accessions with different clonal propagation records. A stringent variant calling procedure was established to identify reliable polymorphisms among the analyzed accessions. The latter procedure retrieved 941 single nucleotide variants (SNVs). A reduced set of the detected SNVs was corroborated through Sanger sequencing, and employed to custom-design a genotyping experiment. We successfully genotyped 214 Malbec accessions using 41 SNVs, and identified 14 genotypes that clustered in two genetically divergent clonal lineages. These lineages were associated with the time span of clonal propagation of the analyzed accessions in Argentina and Europe. Our results show the usefulness of this approach for the study of the scarce intra-cultivar genetic diversity in grapevines. We also provide evidence on how human actions might have driven the accumulation of different somatic mutations, ultimately shaping the Malbec genetic diversity pattern.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul Stothard ◽  
Jung-Woo Choi ◽  
Urmila Basu ◽  
Jennifer M Sumner-Thomson ◽  
Yan Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document