scholarly journals Preconditioning of Caenorhabditis elegans to Anoxic Insult by Inactivation of Cholinergic, GABAergic, and Muscle Activity

2020 ◽  
Author(s):  
Heather L. Bennett ◽  
Patrick D. McClanahan ◽  
Christopher Fang-Yen ◽  
Robert G. Kalb

AbstractFor most metazoans, oxygen deprivation leads to cell dysfunction and if severe, death. Sublethal stress prior to a hypoxic or anoxic insult (“preconditioning”) can protect cells from subsequent oxygen deprivation. The molecular mechanisms by which sublethal stress can buffer against a subsequent toxic insult and the role of the nervous system in the response are not well understood. We studied the role of neuronal activity preconditioning to oxygen deprivation in C. elegans. Animals expressing the histamine gated chloride channels (HisCl1) in select cell populations were used to temporally and spatially inactivate the nervous system or tissue prior to an anoxic insult. We find that inactivation of the nervous system for 3 hours prior to the insult confers resistance to a 48-hour anoxic insult in 4th-stage larval animals. Experiments show that this resistance can be attributed to loss of activity in cholinergic and GABAergic neurons as well as in body wall muscles. These observations indicate that the nervous system activity can mediate the organism’s response to anoxia.

Author(s):  
Lan Deng ◽  
Jack Denham ◽  
Charu Arya ◽  
Omer Yuval ◽  
Netta Cohen ◽  
...  

AbstractInhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contraction of antagonist muscles, whether along the body axis or within and among limbs. In the nematode C. elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low and high undulation frequencies. During low undulation frequency, GABAergic VD and DD motoneurons show similar activity patterns, while during high undulation frequency, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or inhibitory reset.Significance StatementInhibition serves multiple roles in the generation, maintenance, and modulation of the locomotive program and supports the alternating activation of antagonistic muscles. When the locomotor frequency increases, more inhibition is required. To better understand the role of inhibition in locomotion, we used C. elegans as an animal model, and challenged a prevalent hypothesis that cross-inhibition supports the dorsoventral alternation. We find that inhibition is related to the speed rather than the direction of locomotion and demonstrate that inhibition is unnecessary for muscle alternation during slow undulation in either direction but crucial to sustain rapid dorsoventral alternation. We combined calcium imaging of motoneurons and muscle with computational models to test hypotheses for the role of inhibition in locomotion.


2018 ◽  
Author(s):  
Fernando Calahorro ◽  
Francesca Keefe ◽  
James Dillon ◽  
Lindy Holden-Dye ◽  
Vincent O’Connor

ABSTRACTThe integration of distinct sensory modalities is essential for behavioural decision making. In C. elegans this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts on the microcircuits to modulating feeding and foraging drivers at the level of the pharyngeal and body wall muscle respectively. When food triggers an upregulation in pharyngeal pumping it allows the effective ingestion of food. Here we show that a C. elegans mutant in the single orthologous gene of human neuroligins, nlg-1 are defective in food induced pumping. This is not explained by an inability to sense food, as nlg-1 mutants are not defective in chemotaxis towards bacteria. In addition, we show that neuroligin is widely expressed in the nervous system including AIY, ADE, ALA, URX and HSN neurones. Interestingly, despite the deficit in pharyngeal pumping neuroligin is not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolve electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking a food-dependent pumping, and show that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.


2003 ◽  
Vol 161 (4) ◽  
pp. 757-768 ◽  
Author(s):  
Julia M. Bosher ◽  
Bum-Soo Hahn ◽  
Renaud Legouis ◽  
Satis Sookhareea ◽  
Robby M. Weimer ◽  
...  

Morphogenesis of the Caenorhabditis elegans embryo is driven by actin microfilaments in the epidermis and by sarcomeres in body wall muscles. Both tissues are mechanically coupled, most likely through specialized attachment structures called fibrous organelles (FOs) that connect muscles to the cuticle across the epidermis. Here, we report the identification of new mutations in a gene known as vab-10, which lead to severe morphogenesis defects, and show that vab-10 corresponds to the C. elegans spectraplakin locus. Our analysis of vab-10 reveals novel insights into the role of this plakin subfamily. vab-10 generates isoforms related either to plectin (termed VAB-10A) or to microtubule actin cross-linking factor plakins (termed VAB-10B). Using specific antibodies and mutations, we show that VAB-10A and VAB-10B have distinct distributions and functions in the epidermis. Loss of VAB-10A impairs the integrity of FOs, leading to epidermal detachment from the cuticle and muscles, hence demonstrating that FOs are functionally and molecularly related to hemidesmosomes. We suggest that this isoform protects against forces external to the epidermis. In contrast, lack of VAB-10B leads to increased epidermal thickness during embryonic morphogenesis when epidermal cells change shape. We suggest that this isoform protects cells against tension that builds up within the epidermis.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1891-1902 ◽  
Author(s):  
E.L. Peckol ◽  
J.A. Zallen ◽  
J.C. Yarrow ◽  
C.I. Bargmann

The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 125-134
Author(s):  
E. F. Vasilyeva ◽  
O. S. Brusov

Background: at present, the important role of the monocyte-macrophage link of immunity in the pathogenesis of mental diseases has been determined. In the first and second parts of our review, the cellular and molecular mechanisms of activation of monocytes/macrophages, which secreting proinflammatory CD16 receptors, cytokines, chemokines and receptors to them, in the development of systemic immune inflammation in the pathogenesis of somatic diseases and mental disorders, including schizophrenia, bipolar affective disorder (BAD) and depression were analyzed. The association of high levels of proinflammatory activity of monocytes/macrophages in patients with mental disorders with somatic comorbidity, including immune system diseases, is shown. It is known that proinflammatory monocytes of peripheral blood, as a result of violation of the integrity of the hematoencephalic barrier can migrate to the central nervous system and activate the resident brain cells — microglia, causing its activation. Activation of microglia can lead to the development of neuroinammation and neurodegenerative processes in the brain and, as a result, to cognitive disorders. The aim of review: to analyze the results of the main scientific studies concerning the role of cellular and molecular mechanisms of peripheral blood monocytes interaction with microglial cells and platelets in the development of neuroinflammation in the pathogenesis of mental disorders, including Alzheimer’s disease (AD). Material and methods: keywords “mental disorders, AD, proinflammatory monocytes, microglia, neuroinflammation, cytokines, chemokines, cell adhesion molecules, platelets, microvesicles” were used to search for articles of domestic and foreign authors published over the past 30 years in the databases PubMed, eLibrary, Science Direct and EMBASE. Conclusion: this review analyzes the results of studies which show that monocytes/macrophages and microglia have similar gene expression profiles in schizophrenia, BAD, depression, and AD and also perform similar functions: phagocytosis and inflammatory responses. Monocytes recruited to the central nervous system stimulate the increased production of proinflammatory cytokines IL-1, IL-6, tumor necrosis factor alpha (TNF-α), chemokines, for example, MCP-1 (Monocyte chemotactic protein-1) by microglial cells. This promotes the recruitment of microglial cells to the sites of neuronal damage, and also enhances the formation of the brain protein beta-amyloid (Aβ). The results of modern studies are presented, indicating that platelets are involved in systemic inflammatory reactions, where they interact with monocytes to form monocyte-platelet aggregates (MTA), which induce the activation of monocytes with a pro inflammatory phenotype. In the last decade, it has been established that activated platelets and other cells of the immune system, including monocytes, detached microvesicles (MV) from the membrane. It has been shown that MV are involved as messengers in the transport of biologically active lipids, cytokines, complement, and other molecules that can cause exacerbation of systemic inflammatory reactions. The presented review allows us to expand our knowledge about the cellular and molecular aspects of the interaction of monocytes/macrophages with microglial cells and platelets in the development of neuroinflammation and cognitive decline in the pathogenesis of mental diseases and in AD, and also helps in the search for specific biomarkers of the clinical severity of mental disorder in patients and the prospects for their response to treatment.


2019 ◽  
Vol 20 (24) ◽  
pp. 6358 ◽  
Author(s):  
Giuseppina Emanuela Grieco ◽  
Noemi Brusco ◽  
Giada Licata ◽  
Laura Nigi ◽  
Caterina Formichi ◽  
...  

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic β cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inβ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases.


2019 ◽  
Vol 7 (2) ◽  
pp. 8 ◽  
Author(s):  
DiLoreto ◽  
Chute ◽  
Bryce ◽  
Srinivasan

The complete structure and connectivity of the Caenorhabditis elegans nervous system (“mind of a worm”) was first published in 1986, representing a critical milestone in the field of connectomics. The reconstruction of the nervous system (connectome) at the level of synapses provided a unique perspective of understanding how behavior can be coded within the nervous system. The following decades have seen the development of technologies that help understand how neural activity patterns are connected to behavior and modulated by sensory input. Investigations on the developmental origins of the connectome highlight the importance of role of neuronal cell lineages in the final connectivity matrix of the nervous system. Computational modeling of neuronal dynamics not only helps reconstruct the biophysical properties of individual neurons but also allows for subsequent reconstruction of whole-organism neuronal network models. Hence, combining experimental datasets with theoretical modeling of neurons generates a better understanding of organismal behavior. This review discusses some recent technological advances used to analyze and perturb whole-organism neuronal function along with developments in computational modeling, which allows for interrogation of both local and global neural circuits, leading to different behaviors. Combining these approaches will shed light into how neural networks process sensory information to generate the appropriate behavioral output, providing a complete understanding of the worm nervous system.


2020 ◽  
Vol 21 (11) ◽  
pp. 4045 ◽  
Author(s):  
Bruno Tilocca ◽  
Luisa Pieroni ◽  
Alessio Soggiu ◽  
Domenico Britti ◽  
Luigi Bonizzi ◽  
...  

Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut–brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).


Sign in / Sign up

Export Citation Format

Share Document