scholarly journals Cold tolerance of mountain stoneflies (Plecoptera: Nemouridae) from the high Rocky Mountains

2020 ◽  
Author(s):  
Scott Hotaling ◽  
Alisha A. Shah ◽  
Michael E. Dillon ◽  
J. Joseph Giersch ◽  
Lusha M. Tronstad ◽  
...  

ABSTRACTHow aquatic insects cope with cold temperatures is poorly understood. This is particularly true for high-elevation species that often experience a seasonal risk of freezing. In the Rocky Mountains, nemourid stoneflies (Plecoptera: Nemouridae) are a major component of mountain stream biodiversity and are typically found in streams fed by glaciers and snowfields, which due to climate change, are rapidly receding. Predicting the effects of climate change on mountain stoneflies is difficult because their thermal physiology is largely unknown. We investigated cold tolerance of several alpine stoneflies (Lednia tumana, Lednia tetonica, and Zapada spp.) from the Rocky Mountains, USA. We measured the supercooling point (SCP) and tolerance to ice enclosure of late-instar nymphs collected from a range of thermal regimes. SCPs varied among species and populations, with the lowest SCP measured for nymphs from an alpine pond, which is much more likely to freeze solid in winter than flowing streams. We also show that L. tumana cannot survive being enclosed in ice, even for short periods of time (less than three hours) at relatively mild temperatures (−0.5 °C). Our results indicate that high-elevation stoneflies at greater risk of freezing may have correspondingly lower SCPs, and despite their common association with glacial meltwater, they appear to be living near their lower thermal limits.

2019 ◽  
Author(s):  
Lusha M. Tronstad ◽  
Scott Hotaling ◽  
J. Joseph Giersch ◽  
Oliver J. Wilmot ◽  
Debra S. Finn

ABSTRACTNear-term extirpations of macroinvertebrates are predicted for mountain streams worldwide as a warming climate drives the recession of high-elevation ice and snow. However, hydrological sources likely vary in their resistance to climate change and thus streams fed by more resistant sources could persist as climate refugia for imperiled biota. In 2015-2016, we measured habitat characteristics and quantified macroinvertebrate community structure along six alpine streams in the Teton Range, Wyoming, USA. Strong differences in habitat characteristics (e.g., temperature, bed stability, conductivity) confirmed three major stream sources: surface glaciers, perennial snowfields, and subterranean ice. Subterranean ice-fed streams – termed “icy seeps” – appear common in the Teton Range and elsewhere yet are globally understudied. Midges in the family Chironomidae dominated our study sites, representing 78.6% of all specimens sampled, with nematodes, caddisflies (Neothremma), and mayflies (Epeorus) also common. At the community-scale, glacier-and snowmelt-fed streams differed significantly in multivariate space, with icy-seep communities intermediate between them, incorporating components of both assemblages. Because the thermal environment of subterranean ice, including rock glaciers, is decoupled from large-scale climatic conditions, we predict that icy seeps will remain intact longer than streams fed by surface ice and snow. Furthermore, our results suggest that icy seeps are suitable habitat for many macroinvertebrates occupying streams fed by vulnerable hydrological sources. Thus, icy seeps may act as key climate refugia for mountain stream biodiversity, an idea in need of further investigation.


The Holocene ◽  
2011 ◽  
Vol 22 (7) ◽  
pp. 739-748 ◽  
Author(s):  
Scott Mensing ◽  
John Korfmacher ◽  
Thomas Minckley ◽  
Robert Musselman

Future climate projections predict warming at high elevations that will impact treeline species, but complex topographic relief in mountains complicates ecologic response, and we have a limited number of long-term studies examining vegetation change related to climate. In this study, pollen and conifer stomata were analyzed from a 2.3 m sediment core extending to 15,330 cal. yr BP recovered from a treeline lake in the Rocky Mountains of Wyoming. Both pollen and stomata record a sequence of vegetation and climate change similar in most respects to other regional studies, with sagebrush steppe and lowered treeline during the Late Pleistocene, rapid upward movement of treeline beginning about 11,500 cal. yr BP, treeline above modern between ~9000 and 6000 cal. yr BP, and then moving downslope ~5000 cal. yr BP, reaching modern limits by ~3000 cal. yr BP. Between 6000 and 5000 cal. yr BP sediments become increasingly organic and sedimentation rates increase. We interpret this as evidence for lower lake levels during an extended dry period with warmer summer temperatures and treeline advance. The complex topography of the Rocky Mountains makes it challenging to identify regional patterns associated with short term climatic variability, but our results contribute to gaining a better understanding of past ecologic responses at high elevation sites.


Author(s):  
Matthew D. Green ◽  
Lusha M. Tronstad ◽  
J. Joseph Giersch ◽  
Alisha A. Shah ◽  
Candace E. Fallon ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joanne M. Bennett ◽  
Jennifer Sunday ◽  
Piero Calosi ◽  
Fabricio Villalobos ◽  
Brezo Martínez ◽  
...  

AbstractUnderstanding how species’ thermal limits have evolved across the tree of life is central to predicting species’ responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary ‘attractors’ that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.


Author(s):  
Samweli Faraja Miyayo ◽  
Patrick Opiyo Owili ◽  
Miriam Adoyo Muga ◽  
Tang-Huang Lin

In 2018, 70% of global fatalities due to pneumonia occurred in about fifteen countries, with Tanzania being among the top eight countries contributing to these deaths. Environmental and individual factors contributing to these deaths may be multifaceted, but they have not yet been explored in Tanzania. Therefore, in this study, we explore the association between climate change and the occurrence of pneumonia in the Tanga Region, Tanzania. A time series study design was employed using meteorological and health data of the Tanga Region collected from January 2016 to December 2018 from the Tanzania Meteorological Authority and Health Management Information System, respectively. The generalized negative binomial regression technique was used to explore the associations between climate indicators (i.e., precipitation, humidity, and temperature) and the occurrence of pneumonia. There were trend differences in climate indicators and the occurrence of pneumonia between the Tanga and Handeni districts. We found a positive association between humidity and increased rates of non-severe pneumonia (incidence rate ratio (IRR) = 1.01; 95% CI: 1.01–1.02; p ≤ 0.05) and severe pneumonia (IRR = 1.02; 95% CI: 1.01–1.03; p ≤ 0.05). There was also a significant association between cold temperatures and the rate of severe pneumonia in Tanga (IRR = 1.21; 95% CI: 1.11–1.33; p ≤ 0.001). Other factors that were associated with pneumonia included age and district of residence. We found a positive relationship between humidity, temperature, and incidence of pneumonia in the Tanga Region. Policies focusing on prevention and control, as well as promotion strategies relating to climate change-related health effects should be developed and implemented.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


2010 ◽  
Vol 7 (9) ◽  
pp. 2601-2611 ◽  
Author(s):  
B. R. Reverter ◽  
E. P. Sánchez-Cañete ◽  
V. Resco ◽  
P. Serrano-Ortiz ◽  
C. Oyonarte ◽  
...  

Abstract. Two years of continuous measurements of net ecosystem exchange (NEE) using the eddy covariance technique were made over a Mediterranean alpine shrubland. This ecosystem was found to be a net source of CO2 (+ 52 ± 7 g C m−2 and + 48 ± 7 g C m−2 for 2007 and 2008) during the two-year study period. To understand the reasons underlying this net release of CO2 into the atmosphere, we analysed the drivers of seasonal variability in NEE over these two years. We observed that the soil water availability – driven by the precipitation pattern – and the photosynthetic photon flux density (PPFD) are the key factors for understanding both the carbon sequestration potential and the duration of the photosynthetic period during the growing season. Finally, the effects of the self-heating correction to CO2 and H2O fluxes measured with the open-path infrared gas analyser were evaluated. Applying the correction turned the annual CO2 budget in 2007 from a sink (− 135 ± 7 g C m−2) to a source (+ 52 ± 7 g C m−2). The magnitude of this change is larger than reported previously and is shown to be due to the low air density and cold temperatures at this high elevation study site.


Sign in / Sign up

Export Citation Format

Share Document