scholarly journals Headwaters fed by subterranean ice: potential climate refugia for mountain stream communities?

2019 ◽  
Author(s):  
Lusha M. Tronstad ◽  
Scott Hotaling ◽  
J. Joseph Giersch ◽  
Oliver J. Wilmot ◽  
Debra S. Finn

ABSTRACTNear-term extirpations of macroinvertebrates are predicted for mountain streams worldwide as a warming climate drives the recession of high-elevation ice and snow. However, hydrological sources likely vary in their resistance to climate change and thus streams fed by more resistant sources could persist as climate refugia for imperiled biota. In 2015-2016, we measured habitat characteristics and quantified macroinvertebrate community structure along six alpine streams in the Teton Range, Wyoming, USA. Strong differences in habitat characteristics (e.g., temperature, bed stability, conductivity) confirmed three major stream sources: surface glaciers, perennial snowfields, and subterranean ice. Subterranean ice-fed streams – termed “icy seeps” – appear common in the Teton Range and elsewhere yet are globally understudied. Midges in the family Chironomidae dominated our study sites, representing 78.6% of all specimens sampled, with nematodes, caddisflies (Neothremma), and mayflies (Epeorus) also common. At the community-scale, glacier-and snowmelt-fed streams differed significantly in multivariate space, with icy-seep communities intermediate between them, incorporating components of both assemblages. Because the thermal environment of subterranean ice, including rock glaciers, is decoupled from large-scale climatic conditions, we predict that icy seeps will remain intact longer than streams fed by surface ice and snow. Furthermore, our results suggest that icy seeps are suitable habitat for many macroinvertebrates occupying streams fed by vulnerable hydrological sources. Thus, icy seeps may act as key climate refugia for mountain stream biodiversity, an idea in need of further investigation.

2020 ◽  
Author(s):  
Scott Hotaling ◽  
Alisha A. Shah ◽  
Michael E. Dillon ◽  
J. Joseph Giersch ◽  
Lusha M. Tronstad ◽  
...  

ABSTRACTHow aquatic insects cope with cold temperatures is poorly understood. This is particularly true for high-elevation species that often experience a seasonal risk of freezing. In the Rocky Mountains, nemourid stoneflies (Plecoptera: Nemouridae) are a major component of mountain stream biodiversity and are typically found in streams fed by glaciers and snowfields, which due to climate change, are rapidly receding. Predicting the effects of climate change on mountain stoneflies is difficult because their thermal physiology is largely unknown. We investigated cold tolerance of several alpine stoneflies (Lednia tumana, Lednia tetonica, and Zapada spp.) from the Rocky Mountains, USA. We measured the supercooling point (SCP) and tolerance to ice enclosure of late-instar nymphs collected from a range of thermal regimes. SCPs varied among species and populations, with the lowest SCP measured for nymphs from an alpine pond, which is much more likely to freeze solid in winter than flowing streams. We also show that L. tumana cannot survive being enclosed in ice, even for short periods of time (less than three hours) at relatively mild temperatures (−0.5 °C). Our results indicate that high-elevation stoneflies at greater risk of freezing may have correspondingly lower SCPs, and despite their common association with glacial meltwater, they appear to be living near their lower thermal limits.


2015 ◽  
Vol 3 (2) ◽  
pp. 327-369 ◽  
Author(s):  
D. L. Egholm ◽  
J. L. Andersen ◽  
M. F. Knudsen ◽  
J. D. Jansen ◽  
S. B. Nielsen

Abstract. An increasing number of studies point to a strong periglacial control on bedrock erosion in mountain landscapes. Periglacial processes have also been suggested to control the formation of block-fields on high-elevation, low-relief surfaces (summit flats) found in many alpine landscapes. However, to which degree periglacial processes took part in accelerating global erosion rates in response to Late Cenozoic cooling still remains as an unanswered question. In this study, we present a landscape evolution model that incorporates two periglacial processes; frost cracking and frost creep, which both depend on the mean annual temperature (MAT) and sediment thickness. The model experiments allow us to time-integrate the contribution of periglacial processes to mountain topography over million-year time scales. It is a robust result of our experiments that periglacial frost activity leads to the formation of smooth summit flats at elevations dominated by cold climatic conditions through time periods of millions of years. Furthermore, a simplistic scaling of temperatures to δ18O values through the late-Cenozoic indicates that many of the highest summit flats in mid- to high-latitude mountain ranges can have formed prior to the Quaternary. The model experiments also suggest that cooling in the Quaternary accelerated periglacial erosion by expanding the areas affected by periglacial erosion significantly. A computational experiment combining glacial and periglacial erosion furthermore suggests that landscape modifications associated with glacial activity may increase the long-term average efficiency of the frost-related processes.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 990
Author(s):  
Tariq M. Munir ◽  
Cherie J. Westbrook

Beaver dam analogues (BDAs) are becoming an increasingly popular stream restoration technique. One ecological function BDAs might help restore is suitable habitat conditions for fish in streams where loss of beaver dams and channel incision has led to their decline. A critical physical characteristic for fish is stream temperature. We examined the thermal regime of a spring-fed Canadian Rocky Mountain stream in relation to different numbers of BDAs installed in series over three study periods (April–October; 2017–2019). While all BDA configurations significantly influenced stream and pond temperatures, single- and double-configuration BDAs incrementally increased stream temperatures. Single and double configuration BDAs warmed the downstream waters of mean maxima of 9.9, 9.3 °C by respective mean maxima of 0.9 and 1.0 °C. Higher pond and stream temperatures occurred when ponding and discharge decreased, and vice versa. In 2019, variation in stream temperature below double-configuration BDAs was lower than the single-configuration BDA. The triple-configuration BDA, in contrast, cooled the stream, although the mean maximum stream temperature was the highest below these structures. Ponding upstream of BDAs increased discharge and resulted in cooling of the stream. Rainfall events sharply and transiently reduced stream temperatures, leading to a three-way interaction between BDA configuration, rainfall and stream discharge as factors co-influencing the stream temperature regime. Our results have implications for optimal growth of regionally important and threatened bull and cutthroat trout fish species.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Claudia Santibañez ◽  
Luz María de la Fuente ◽  
Elena Bustamante ◽  
Sergio Silva ◽  
Pedro León-Lobos ◽  
...  

The study evaluated the efficacy of organic- and hard-rock mine waste type materials on aided phytostabilization of Cu mine tailings under semiarid Mediterranean conditions in order to promote integrated waste management practices at local levels and to rehabilitate large-scale (from 300 to 3,000 ha) postoperative tailings storage facilities (TSFs). A field trial with 13 treatments was established on a TSF to test the efficacy of six waste-type locally available amendments (grape and olive residues, biosolids, goat manure, sediments from irrigation canals, and rubble from Cu-oxide lixiviation piles) during early phases of site rehabilitation. Results showed that, even though an interesting range of waste-type materials were tested, biosolids (100 t ha-1dry weight, d.w.) and grape residues (200 t ha-1d.w.), either alone or mixed, were the most suitable organic amendments when incorporated into tailings to a depth of 20 cm. Incorporation of both rubble from Cu-oxide lixiviation piles and goat manure into upper tailings also had effective results. All these treatments improved chemical and microbiological properties of tailings and lead to a significant increase in plant yield after three years from trial establishment. Longer-term evaluations are, however required to evaluate self sustainability of created systems without further incorporation of amendments.


1951 ◽  
Vol 41 (1-2) ◽  
pp. 149-162 ◽  
Author(s):  
H. H. Nicholson ◽  
G. Alderman ◽  
D. H. Firth

1. The methods of investigation of the effect of ground water-level on crop growth, together with tho field installations in use, are discussed.2. Direct field experiments are handicapped by the difficulties of achieving close control on a sufficiently large scale, due to considerable variations of surface level and depth of peat within individual fields and to rapid fluctuations in rainfall and evaporation. Many recorded experiments are associated with climatic conditions of substantial precipitation during the growing season.3. Seasonal fluctuations of ground water-level in Fen peat soils in England, in natural and agricultural conditions, are described.4. The local soil conditions are outlined and the implications of profile variations are discussed.5. The effective control of ground water-level on a field scale requires deep and commodious ditches and frequent large underdrains to ensure the movement of water underground with sufficient freedom to give rapid compensatory adjustment for marked disturbances of ground water-level following the incidence of heavy rain or excessive evaporation.6. A working installation for a field experiment in ordinary farming conditions is described and the measure of control attained is indicated.


2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


2001 ◽  
Vol 13 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Jens-Ove Näslund

Large-scale bedrock morphology and relief of two key areas, the Jutulsessen Nunatak and the Jutulstraumen ice stream are used to discuss glascial history and landscape development in western and central Dronning Maud Land, Antarctica. Two main landform components were identified: well-defined summit plateau surfaces and a typical alpine glacial landscape. The flat, high-elevation plateau surfaces previously were part of one or several continuous regional planation surfaces. In western Dronning Maud Land, overlying cover rocks of late Palaeozoic age show that the planation surface(s) existed in the early Permian, prior to the break-up of Gondwana. A well-develoment escarpment, a mega landform typical for passive continental margins, bounds the palaeosurface remnants to the north for a distance of at least 700 km. The Cenozoic glacial landscape, incised in the palaeosurface and escarpment, is exemplified by Jutulsessen Nunatak, where a c. 1.2 km deep glacial valley system is developed. However, the prominent Penck-Jutul Trough represents some of the deepest dissection of the palaeosurface. This originally tectonic feature is today occupied by the Jutulstraumen ice stream. New topographic data show that the bed of the Penck-Jutul Trough is situated 1.9±1.1 km below sea level, and that the total landscape relief is at least 4.2 km. Today's relief is a result of several processes, including tectonic faulting, subaerial weathering, fluvial erosion, and glacial erosion. It is probable that erosion by ice streams has deepened the tectonic troughs of Dronning Maud Land since the onset of ice sheet glaciation in the Oligocene, and continues today. An attempt is made to identify major events in the long-term landscape development of Dronning Maud Land, since the break-up of the Gondwana continent.


Sign in / Sign up

Export Citation Format

Share Document