scholarly journals The effect of opening up the US on COVID-19 spread

Author(s):  
Patrick Bryant ◽  
Arne Elofsson

AbstractIn response to the pandemic development of the novel coronavirus (SARS-CoV-2), governments worldwide have implemented strategies of suppression by non-pharmaceutical interventions (NPIs). Such NPIs include social distancing, school closures, limiting international travel and complete lockdown. Worldwide the NPIs enforced to limit the spread of COVID-19 are now being lifted. Understanding how the risk increases when NPIs are lifted is important for decision making. Treating NPIs equally across countries and regions limits the possibility for modelling differences in epidemic response, as the response to the NPIs influences can vary between regions and this can affect the epidemic outcome, so do the strength and speed of lifting these. Our solution to this is to measure mobility changes from mobile phone data and their impacts on the basic reproductive number. We model the epidemic in all US states to compare the difference in outcome if NPIs are lifted or retained. We show that keeping NPIs just a few weeks longer has a substantial impact on the epidemic outcome.

Author(s):  
Shengjie Lai ◽  
Isaac I. Bogoch ◽  
Nick W Ruktanonchai ◽  
Alexander Watts ◽  
Xin Lu ◽  
...  

AbstractBackgroundA novel coronavirus (2019-nCoV) emerged in Wuhan City, China, at the end of 2019 and has caused an outbreak of human-to-human transmission with a Public Health Emergency of International Concern declared by the World Health Organization on January 30, 2020.AimWe aimed to estimate the potential risk and geographic range of Wuhan novel coronavirus (2019-nCoV) spread within and beyond China from January through to April, 2020.MethodsA series of domestic and international travel network-based connectivity and risk analyses were performed, by using de-identified and aggregated mobile phone data, air passenger itinerary data, and case reports.ResultsThe cordon sanitaire of Wuhan is likely to have occurred during the latter stages of peak population numbers leaving the city before Lunar New Year (LNY), with travellers departing into neighbouring cities and other megacities in China. We estimated that 59,912 air passengers, of which 834 (95% UI: 478 - 1349) had 2019-nCoV infection, travelled from Wuhan to 382 cities outside of mainland China during the two weeks prior to Wuhan’s lockdown. The majority of these cities were in Asia, but major hubs in Europe, the US and Australia were also prominent, with strong correlation seen between predicted importation risks and reported cases. Because significant spread has already occurred, a large number of airline travellers (3.3 million under the scenario of 75% travel reduction from normal volumes) may be required to be screened at origin high-risk cities in China and destinations across the globe for the following three months of February to April, 2020 to effectively limit spread beyond its current extent.ConclusionFurther spread of 2019-nCoV within China and international exportation is likely to occur. All countries, especially vulnerable regions, should be prepared for efforts to contain the 2019-nCoV infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


2020 ◽  
Vol 9 (4) ◽  
pp. 944 ◽  
Author(s):  
Kentaro Iwata ◽  
Chisato Miyakoshi

Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, the Americas, Europe, and the Middle East, the impact of secondary outbreaks caused by exported cases outside China remains unclear. We conducted simulations to estimate the impact of potential secondary outbreaks in a community outside China. Simulations using stochastic SEIR model were conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in the total number of persons recovered or removed to be 997 (95% CrI 990–1000) at day 100 and a maximum number of symptomatic infectious patients per day of 335 (95% CrI 232–478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6–7.2). However, better case scenarios with different parameters led to no secondary cases. Altering parameters, especially time to hospital visit. could change the impact of a secondary outbreak. With these multiple scenarios with different parameters, healthcare professionals might be able to better prepare for this viral infection.


2020 ◽  
Author(s):  
Yanjin Wang ◽  
Pei Wang ◽  
Shudao Zhang ◽  
Hao Pan

Abstract Motivated by the quick control in Wuhan, China, and the rapid spread in other countries of COVID-19, we investigate the questions that what is the turning point in Wuhan by quantifying the variety of basic reproductive number after the lockdown city. The answer may help the world to control the COVID-19 epidemic. A modified SEIR model is used to study the COVID-19 epidemic in Wuhan city. Our model is calibrated by the hospitalized cases. The modeling result gives out that the means of basic reproductive numbers are 1.5517 (95% CI 1.1716-4.4283) for the period from Jan 25 to Feb 11, 2020, and 0.4738(95% CI 0.0997-0.8370) for the period from Feb 12 to Mar 10. The transmission rate fell after Feb 12, 2020 as a result of China’s COVID-19 strategy of keeping society distance and the medical support from all China, but principally because of the clinical symptoms to be used for the novel coronavirus pneumonia (NCP) confirmation in Wuhan since Feb 12, 2020. Clinical diagnosis can quicken up NCP-confirmation such that the COVID-19 patients can be isolated without delay. So the clinical symptoms pneumonia-confirmation is the turning point of the COVID-19 battle of Wuhan. The measure of clinical symptoms pneumonia-confirmation in Wuhan has delayed the growth and reduced size of the COVID-19 epidemic, decreased the peak number of the hospitalized cases by 96% in Wuhan. Our modeling also indicates that the earliest start date of COVID-19 in Wuhan may be Nov 2, 2019.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunyu Li ◽  
Yuchen Zhu ◽  
Chang Qi ◽  
Lili Liu ◽  
Dandan Zhang ◽  
...  

Background: Novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), is now sweeping across the world. A substantial proportion of infections only lead to mild symptoms or are asymptomatic, but the proportion and infectivity of asymptomatic infections remains unknown. In this paper, we proposed a model to estimate the proportion and infectivity of asymptomatic cases, using COVID-19 in Henan Province, China, as an example.Methods: We extended the conventional susceptible-exposed-infectious-recovered model by including asymptomatic, unconfirmed symptomatic, and quarantined cases. Based on this model, we used daily reported COVID-19 cases from January 21 to February 26, 2020, in Henan Province to estimate the proportion and infectivity of asymptomatic cases, as well as the change of effective reproductive number, Rt.Results: The proportion of asymptomatic cases among COVID-19 infected individuals was 42% and the infectivity was 10% that of symptomatic ones. The basic reproductive number R0 = 2.73, and Rt dropped below 1 on January 31 under a series of measures.Conclusion: The spread of the COVID-19 epidemic was rapid in the early stage, with a large number of asymptomatic infected individuals having relatively low infectivity. However, it was quickly brought under control with national measures.


Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 epidemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number (R0) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the epidemic.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. A. A. El-Saka ◽  
I. Obaya ◽  
H. N. Agiza

AbstractAs is well known the novel coronavirus (COVID-19) is a zoonotic virus and our model is concerned with the effect of the zoonotic source of the coronavirus during the outbreak in China. We present a SEIS complex network epidemic model for the novel coronavirus. Our model is presented in fractional form and with varying population. The steady states and the basic reproductive number are calculated. We also present some numerical examples and the sensitivity analysis of the basic reproductive number for the parameters.


Author(s):  
Sang Woo Park ◽  
Benjamin M. Bolker ◽  
David Champredon ◽  
David J. D. Earn ◽  
Michael Li ◽  
...  

AbstractA novel coronavirus (SARS-CoV-2) has recently emerged as a global threat. As the epidemic progresses, many disease modelers have focused on estimating the basic reproductive number ℛ0– the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modeling approaches and resulting estimates of ℛ0 vary widely, despite relying on similar data sources. Here, we present a novel statistical framework for comparing and combining different estimates of ℛ0 across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate r, the mean generation interval , and the generation-interval dispersion κ. We then apply our framework to early estimates of ℛ0 for the SARS-CoV-2 outbreak. We show that many early ℛ0 estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of ℛ0, including the shape of the generation-interval distribution, in efforts to estimate ℛ0 at the outset of an epidemic.


Author(s):  
Steven Sanche ◽  
Yen Ting Lin ◽  
Chonggang Xu ◽  
Ethan Romero-Severson ◽  
Nick Hengartner ◽  
...  

AbstractThe novel coronavirus (2019-nCoV) is a recently emerged human pathogen that has spread widely since January 2020. Initially, the basic reproductive number, R0, was estimated to be 2.2 to 2.7. Here we provide a new estimate of this quantity. We collected extensive individual case reports and estimated key epidemiology parameters, including the incubation period. Integrating these estimates and high-resolution real-time human travel and infection data with mathematical models, we estimated that the number of infected individuals during early epidemic double every 2.4 days, and the R0 value is likely to be between 4.7 and 6.6. We further show that quarantine and contact tracing of symptomatic individuals alone may not be effective and early, strong control measures are needed to stop transmission of the virus.One-sentence summaryBy collecting and analyzing spatiotemporal data, we estimated the transmission potential for 2019-nCoV.


Sign in / Sign up

Export Citation Format

Share Document