scholarly journals Explainable death toll motion modeling: COVID-19 narratives and counterfactuals

Author(s):  
Adriano Veloso ◽  
Nivio Ziviani

Models have gained the spotlight in many discussions surrounding COVID-19. The urgency for timely decisions resulted in a multitude of models as informed policy actions must be made even when so many uncertainties about the pandemic still remain. In this paper, we use machine learning algorithms to build intuitive country-level COVID-19 motion models described by death toll velocity and acceleration. Model explainability techniques provide insightful data-driven narratives about COVID-19 death toll motion models $-$ while velocity is explained by factors that are increasing/reducing death toll pace now, acceleration anticipates the effects of public health measures on slowing the death toll pace. This allows policymakers and epidemiologists to understand factors driving the outbreak and to evaluate the impacts of different public health measures. Finally, our models also predict counterfactuals in order to face the challenge of estimating what is likely to happen as a result of an action.

2020 ◽  
Vol 5 ◽  
pp. 56 ◽  
Author(s):  
Rodrigo M. Carrillo-Larco ◽  
Manuel Castillo-Cara

Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions: A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data.


2020 ◽  
Vol 5 ◽  
pp. 56 ◽  
Author(s):  
Rodrigo M. Carrillo-Larco ◽  
Manuel Castillo-Cara

Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions: A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data.


The world is reworking in a digital era. However, the field of medicine was quite repulsive to technology. Recently, the advent of newer technologies like machine learning has catalyzed its adoption into healthcare. The blending of technology and medicine is facilitating a wealth of innovation that continues to improve lives. With the realm of possibility, machine learning is discovering various trends in a dataset and it is globally practiced in various medical conditions to predict the results, diagnose, analyze, treat, and recover. Machine Learning is aiding a lot to fight the battle against Covid-19. For instance, a face scanner that uses ML is used to detect whether a person has a fever or not. Similarly, the data from wearable technology like Apple Watch and Fitbit can be used to detect the changes in resting heart rate patterns which help in detecting coronavirus. According to a study by the Hindustan Times, the number of cases is rapidly increasing. Careful risk assessments should identify hotspots and clusters, and continued efforts should be made to further strengthen capacities to respond, especially at sub-national levels. The core public health measures for the Covid-19 response remain, rapidly detect, test, isolate, treat, and trace all contacts. The work presented in this paper represents the system that predicts the number of coronavirus cases in the upcoming days as well as the possibility of the infection in a particular person based on the symptoms. The work focuses on Linear Regression and SVM models for predicting the curve of active cases. SVM is least affected by noisy data, and it is not prone to overfitting. To diagnose a person our application has a certain question that needs to be answered. Based on this, the KNN model provides the maximum likelihood result of a person being infected or not. Tracking and monitoring in the course of such pandemic help us to be prepared.


2020 ◽  
Vol 5 ◽  
pp. 56 ◽  
Author(s):  
Rodrigo M. Carrillo-Larco ◽  
Manuel Castillo-Cara

Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions: A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data.


2021 ◽  
Vol 19 (7) ◽  
pp. 59-82
Author(s):  
Md Ashraf Ahmed, PhD Candidate ◽  
Arif Mohaimin Sadri, PhD ◽  
M. Hadi Amini, PhD, DEng

Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19.


2021 ◽  
Author(s):  
Carlos Eduardo Beluzo ◽  
Luciana Correia Alves ◽  
Natália Martins Arruda ◽  
Cátia Sepetauskas ◽  
Everton Silva ◽  
...  

ABSTRACTReduction in child mortality is one of the United Nations Sustainable Development Goals for 2030. In Brazil, despite recent reduction in child mortality in the last decades, the neonatal mortality is a persistent problem and it is associated with the quality of prenatal, childbirth care and social-environmental factors. In a proper health system, the effect of some of these factors could be minimized by the appropriate number of newborn intensive care units, number of health care units, number of neonatal incubators and even by the correct level of instruction of mothers, which can lead to a proper care along the prenatal period. With the intent of providing knowledge resources for planning public health policies focused on neonatal mortality reduction, we propose a new data-driven machine leaning method for Neonatal Mortality Rate forecasting called NeMoR, which predicts neonatal mortality rates for 4 months ahead, using NeoDeathForecast, a monthly base time series dataset composed by these factors and by neonatal mortality rates history (2006-2016), having 57,816 samples, for all 438 Brazilian administrative health regions. In order to build the model, Extra-Tree, XGBoost Regressor, Gradient Boosting Regressor and Lasso machine learning regression models were evaluated and a hyperparameters search was also performed as a fine tune step. The method has been validated using São Paulo city data, mainly because of data quality. On the better configuration the method predicted the neonatal mortality rates with a Mean Square Error lower than 0.18. Besides that, the forecast results may be useful as it provides a way for policy makers to anticipate trends on neonatal mortality rates curves, an important resource for planning public health policies.Graphical AbstractHighlightsProposition of a new data-driven approach for neonatal mortality rate forecast, which provides a way for policy-makers to anticipate trends on neonatal mortality rates curves, making a better planning of health policies focused on NMR reduction possible;a method for NMR forecasting with a MSE lower than 0.18;an extensive evaluation of different Machine Learning (ML) regression models, as well as hyperparameters search, which accounts for the last stage in NeMoR;a new time series database for NMR prediction problems;a new features projection space for NMR forecasting problems, which considerably reduces errors in NRM prediction.


Author(s):  
Malik Magdon-Ismail

AbstractWe present a robust data-driven machine learning analysis of the COVID-19 pandemic from its early infection dynamics, specifically infection counts over time. The goal is to extract actionable public health insights. These insights include the infectious force, the rate of a mild infection becoming serious, estimates for asymtomatic infections and predictions of new infections over time. We focus on USA data starting from the first confirmed infection on January 20 2020. Our methods reveal significant asymptomatic (hidden) infection, a lag of about 10 days, and we quantitatively confirm that the infectious force is strong with about a 0.14% transition from mild to serious infection. Our methods are efficient, robust and general, being agnostic to the specific virus and applicable to different populations or cohorts.


Author(s):  
Fernando Enrique Lopez Martinez ◽  
Edward Rolando Núñez-Valdez

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
David F. Nettleton ◽  
Dimitrios Katsantonis ◽  
Argyris Kalaitzidis ◽  
Natasa Sarafijanovic-Djukic ◽  
Pau Puigdollers ◽  
...  

Abstract Background In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared. Results Results clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant “signals” during the “early warning” period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r2 and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts. Conclusions Process-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and – in cases when training datasets are available – offer a potentially greater adaptability to new contexts.


Sign in / Sign up

Export Citation Format

Share Document