scholarly journals Breathlessness and the body: Neuroimaging evidence for the inferential leap

2017 ◽  
Author(s):  
Olivia K Faull ◽  
Anja Hayen ◽  
Kyle T S Pattinson

AbstractBreathlessness debilitates millions of people with chronic illness. Mismatch between breathlessness severity and objective disease markers is common and poorly understood. Traditionally, sensory perception was conceptualised as a stimulus-response relationship, although this cannot explain how conditioned symptoms may occur in the absence of physiological signals from the lungs or airways. A Bayesian model is now proposed in which the brain generates sensations based on expectations learned from past experiences (priors), which are then checked against incoming afferent signals. In this model, psychological factors may act as moderators. They may either alter priors, or change the relative attention towards incoming sensory information, leading to more variable interpretation of an equivalent afferent input.In the present study we conducted a preliminary test of this model in a supplementary analysis of previously published data (Hayen 2017). We hypothesised that individual differences in psychological traits (anxiety, depression, anxiety sensitivity) would correlate with the variability of subjective evaluation of equivalent breathlessness challenges. To better understand the resulting inferential leap in the brain, we explored whether these behavioural measures correlated with activity in areas governing either prior generation or sensory afferent input.Behaviorally, anxiety sensitivity was found to positively correlate with each subject’s variability of intensity and unpleasantness during mild breathlessness, and with unpleasantness during strong breathlessness. In the brain, anxiety sensitivity was found to positively correlate with activity in the anterior insula during mild breathlessness, and negatively correlate with parietal sensorimotor areas during strong breathlessness.Our findings suggest that anxiety sensitivity may reduce the robustness of this Bayesian sensory perception system, increasing the variability of breathlessness perception and possibly susceptibility to symptom misinterpretation. These preliminary findings in healthy individuals demonstrate how differences in psychological function influence the way we experience bodily sensations, which might direct us towards better understanding of symptom mismatch in clinical populations.

2004 ◽  
Vol 27 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Rick Grush

The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide variety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and evaluate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. Perception, including visual perception, results from such models being used to form expectations of, and to interpret, sensory input. I close by briefly outlining other cognitive functions that might also be synthesized within this framework, including reasoning, theory of mind phenomena, and language.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


2021 ◽  
Vol - (6) ◽  
pp. 58-77
Author(s):  
Oleg Solovyov

Since Descartes “separation” of the Soul from the Body, we observe a complete confusion in their causal, functional, and semiotic relationships. However, in modern knowledge (about the informational activity of the human brain, the functional and causal properties of its neural networks, the functions of psychic phenomena during the processing of information in it, about the causal “ability” of information) it is time to put an end to this problem. Here, in order to explain what I am talking about, I will use the notion of “information” (which had been unknown by Descartes) regarding the “dispute” between Mind & Body (the Physicality and the Mentality) for “the right” to be a more fundamental ontology of Reality. I will do this by introducing an “arbitrator” — the Objective Reality. This goal is achieved through the study of information activity of the human brain. In the process of this study, it turns out that the information activity of the brain in principle cannot be carried out without mental phenomena. That is, it turns out that the classical physical causality, which operates in the neural networks of the brain, is not able, by itself, without mental phenomena, to implement the information operations that the human brain actually performs. It also turns out that the functional inclusion of mental phenomena (at least, the phenomena of subjective evaluation and mental images) in the neurophysiologic (by and large, physical) activity of the brain explains the possibility and necessity of functional inclusion in this information processing the phenomenon of freedom of choice. After all, the processing information in the brain through mental phenomena allows more than one degree of freedom than it is “allowed” by any physical process.


2018 ◽  
Vol 29 (4) ◽  
pp. 496-503 ◽  
Author(s):  
Erika H. Siegel ◽  
Jolie B. Wormwood ◽  
Karen S. Quigley ◽  
Lisa Feldman Barrett

Affective realism, the phenomenon whereby affect is integrated into an individual’s experience of the world, is a normal consequence of how the brain processes sensory information from the external world in the context of sensations from the body. In the present investigation, we provided compelling empirical evidence that affective realism involves changes in visual perception (i.e., affect changes how participants see neutral stimuli). In two studies, we used an interocular suppression technique, continuous flash suppression, to present affective images outside of participants’ conscious awareness. We demonstrated that seen neutral faces are perceived as more smiling when paired with unseen affectively positive stimuli. Study 2 also demonstrated that seen neutral faces are perceived as more scowling when paired with unseen affectively negative stimuli. These findings have implications for real-world situations and challenge beliefs that affect is a distinct psychological phenomenon that can be separated from cognition and perception.


2020 ◽  
Author(s):  
Pablo Lanillos ◽  
Sae Franklin ◽  
David W. Franklin

AbstractThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations. Here we describe a computational model, based on the free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We experimentally confirm those predictions in humans by means of a virtual reality rubber-hand illusion. Participants generated movements (forces) towards the virtual hand, regardless of its location with respect to the real arm, with little to no forces produced when the virtual hand overlaid their physical hand. The congruency of our model predictions and human observations shows that the brain-body is generating actions to reduce the prediction error between the expected arm location and the new visual arm. This observed unconscious mechanism is an empirical validation of the perception-action duality in body adaptation to uncertain situations and evidence of the active component of predictive processing.Author SummaryHumans’ capacity to perceive and control their body in space is central in awareness, adaptation and safe interaction. From low-level body perception to body-ownership, discovering how the brain represents the body and generates actions is of major importance for cognitive science and also for robotics and artificial intelligence. The present study shows that humans move their body to match the expected location according to other (visual) sensory input, which corresponds to reducing the prediction error. This means that the brain adapts to conflicting or uncertain information from the senses by unconsciously acting in the world.


Author(s):  
Gary Hatfield

This chapter reviews the basic tenets of Descartes’s mind–body dualism and its context, including the epistemological role of mind in its capacity as a pure intellect and as part of a being with sensory perception. Then, putting aside the metaphysics of dualism, it focuses on the functional aspects of mind and its relation to body, and on the role of the bodily machine in Descartes’s psychology. Within this large territory, it examines mind and psychology as categories applicable to Descartes’s writings before turning to the active role of the brain in Descartes’s theory of mind and machine psychology, including his “natural geometry”, his theory of the passions, and the machine psychology of mindless non-human animals—and of human beings, when the body acts without direction from the mind.


2021 ◽  
Vol 17 ◽  
Author(s):  
Joshua W. Kandiah ◽  
Daniel M. Blumberger ◽  
Simon W. Rabkin

Background and Objective: Palpitations are a common symptom that may indicate cardiac arrhythmias, be a somatic complaint in anxiety disorders, and can be present in patients without either condition. The objective of this review was to explore the pathways and fundamental mechanisms through which individuals appreciate palpitations. Observations: Cardiac afferents provide beat-to-beat sensory information on the heart to the spinal cord, brain stem, and higher brain centers. Cardioception, a subset of interoception (‘the physiological sense of the condition of the body’), refers to sensing of the heartbeat. High cardioception is present in persons with lower body mass index, lower percentages of body fat, and anxiety disorders. Low cardioception (lower interoceptive awareness) is associated with psychiatric disorders, such as depression, personality disorders, and schizophrenia. CNS sites associated with heartbeat detection have been identified by functional magnetic resonance imaging studies and heartbeat-evoked electroencephalogram potentials. The right insula, cingulate gyrus, somatomotor and somatosensory cortices nucleus accumbens, left subthalamic nucleus, and left ventral capsule/striatum are implicated in both palpitations and heartbeat detection. Involvement of the brain as a primary modulator of palpitations rests on the data that various areas of the brain are activated in association with cardioception, the ability of focal brain stimulation to induce palpitations, the ability of central alpha receptor agonists and antagonists to modulate palpitations, and suppression of palpitations by transcranial repetitive magnetic stimulation (rTMS). Conclusions: Palpitations should be viewed as a pathway extending from the heart to the brain. Palpitations are, in part, a reflection of an individual’s cardioception awareness, which is modulated by body size, percentage of body fat, and psychological or psychiatric conditions. Palpitations can originate in the brain and involve central neurotransmitters. Treatment of palpitations unrelated to cardiac arrhythmias or anxiety disorders should consider the use of central alpha-2 agonists and possibly rTMS.


CNS Spectrums ◽  
2000 ◽  
Vol 5 (11) ◽  
pp. 43-52 ◽  
Author(s):  
Mark S. George ◽  
Ziad Nahas ◽  
Daryl E. Bohning ◽  
Mikhael Lomarev ◽  
Stuart Denslow ◽  
...  

AbstractAlthough the vagus nerve has traditionally been considered to perform efferent functions, in reality it performs significant afferent functions as well, carrying information from the body, head, and neck to the brain. Preliminary studies examining this afferent activity led to the theory that vagus nerve stimulation (VNS) could successfully control seizure activity in persons who are refractory to antiepileptic medications. Unlike other forms of brain stimulation, VNS is unable to directly stimulate multiple discrete areas of the brain; however, through several pathways, it is able to relay sensory information to higher brain regions. An implantable VNS device known as the VNS™ NeuroCybernetic Prosthesis (NCP) System has been used in approximately 9,000 epilepsy patients in Europe and the United States since 1994. The implant has reduced seizure frequency by an average of 25% to 30%, with minimal side effects. Studies underway are also showing some degree of success in the management of treatment-refractory depression. The future efficacy of the implantable system in other disorders may depend on whether the implant can be more precisely focused to affect different brain regions. Research in this area is underway.


Author(s):  
Matthias Cavelius ◽  
Théo Brunel ◽  
Anne Didier

AbstractSensory information, sampled by sensory organs positioned on each side of the body may play a crucial role in organizing brain lateralization. This question is of particular interest with regard to the growing evidence of alteration in lateralization in several psychiatric conditions. In this context, the olfactory system, an ancient, mostly ipsilateral and well-conserved system across phylogeny may prove an interesting model system to understand the behavioral significance of brain lateralization. Here, we focused on behavioral data in vertebrates and non-vertebrates, suggesting that the two hemispheres of the brain differentially processed olfactory cues to achieve diverse sensory operations, such as detection, discrimination, identification of behavioral valuable cues or learning. These include reports across different species on best performances with one nostril or the other or odorant active sampling by one nostril or the other, depending on odorants or contexts. In some species, hints from peripheral anatomical or functional asymmetry were proposed to explain these asymmetries in behavior. Instigations of brain activation or more rarely of brain connectivity evoked by odorants revealed a complex picture with regards to asymmetric patterns which is discussed with respect to behavioral data. Along the steps of the discussed literature, we propose avenues for future research.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


Sign in / Sign up

Export Citation Format

Share Document