scholarly journals Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections

Author(s):  
Qing Lei ◽  
Yang Li ◽  
Hongyan Hou ◽  
Feng Wang ◽  
Yandi Zhang ◽  
...  

Abstract Importance Asymptomatic COVID-19 infections have a long duration of viral shedding and contribute substantially to disease transmission. However, the missing asymptomatic cases have been significantly overlooked because of imperfect sensitivity of nucleic acid testing. We aimed to investigate the humoral immunity in asymptomatics, which will help us develop serological tests and improve early identification, understand the humoral immunity to COVID-19, and provide more rational control strategies for the pandemic. Objective To better control the pandemic of COVID-19, dynamics of IgM and IgG responses to 23 proteins of SARS-CoV-2 and neutralizing antibody in asymptomatic COVID-19 infections after exposure time were investigated. Design, setting, and participants 63 asymptomatic individuals were screened by RT-qPCR and ELISA for IgM and IgG from 11,776 personnel returning to work, and close contacts with the confirmed cases in different communities of Wuhan by investigation of clusters and tracing infectious sources. 63 healthy contacts with both negative results for NAT and antibodies were selected as negative controls. 51 mild patients without any preexisting conditions were also screened as controls from 1056 patients during hospitalization in Tongji Hospital. A total of 177 participants were enrolled in this study and serial serum samples (n=213) were collected. The research was conducted between 17 February 2020 and 28 April 2020. Serum IgM and IgG profiles of 177 participants were further probed using a SARS-CoV-2 proteome microarray. Neutralizing antibody responses in different population were detected by a pseudotyped virus neutralization assay system. The dynamics of IgM and IgG antibodies and neutralizing antibodies were analyzed with exposure time or symptoms onset. Results Asymptomatics were classified into four subgroups based on NAT and serological tests. In particular, only 19% had positive NAT results while approximately 81% detected positive IgM/IgG responses. Comparative SARS-CoV-2 proteome microarray further demonstrated that there was a significantly difference of antibody dynamics responding to S1 or N proteins among three populations, although IgM and IgG profiles could not be used to differentiate them. S1 specific IgM responses were elicited in asymptomatic individuals as early to the seventh day after exposure and peaked on days from 17d to 25d, which might be used as an early diagnostic biomarker and give an additional 36.5% seropositivity. Mild patients produced stronger both S1 specific IgM and neutralizing antibody responses than asymptomatic individuals. Most importantly, S1 specific IgM/IgG responses and the titers of neutralizing antibody in asymptomatic individuals gradually vanished in two months. Conclusions and relevance Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health and immunization strategies.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tybbysay P. Salinas ◽  
Jose L. Garrido ◽  
Jacqueline R. Salazar ◽  
Publio Gonzalez ◽  
Nicole Zambrano ◽  
...  

BackgroundNew World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections.MethodsFor this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry.ResultsHigh titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals.ConclusionA Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.


2020 ◽  
Vol 58 (12) ◽  
Author(s):  
Larry L. Luchsinger ◽  
Brett P. Ransegnola ◽  
Daniel K. Jin ◽  
Frauke Muecksch ◽  
Yiska Weisblum ◽  
...  

ABSTRACT The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.


2021 ◽  
Author(s):  
Wilfredo F Garcia-Beltran ◽  
Kerri J. St Denis ◽  
Angelique Hoelzemer ◽  
Evan C. Lam ◽  
Adam D. Nitido ◽  
...  

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of vaccine-induced neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that were vaccinated recently (<3 months), distantly (6-12 months), or recently boosted, and accounted for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinated individuals. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron only 4-6-fold lower than wild type, suggesting that boosters enhance the cross-reactivity of neutralizing antibody responses. In addition, we find Omicron pseudovirus is significantly more infectious than any other variant tested. Overall, this study highlights the importance of boosters to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Trinité ◽  
Ferran Tarrés-Freixas ◽  
Jordi Rodon ◽  
Edwards Pradenas ◽  
Víctor Urrea ◽  
...  

AbstractThe protective effect of neutralizing antibodies in SARS-CoV-2 infected individuals is not yet well defined. To address this issue, we have analyzed the kinetics of neutralizing antibody responses and their association with disease severity. Between March and May 2020, the prospective KING study enrolled 72 COVID-19+ participants grouped according to disease severity. SARS-CoV-2 infection was diagnosed by serological and virological tests. Plasma neutralizing responses were assessed against replicative virus and pseudoviral particles. Multiple regression and non-parametric tests were used to analyze dependence of parameters. The magnitude of neutralizing titers significantly increased with disease severity. Hospitalized individuals developed higher titers compared to mild-symptomatic and asymptomatic individuals, which together showed titers below the detection limit in 50% of cases. Longitudinal analysis confirmed the strong differences in neutralizing titers between non-hospitalized and hospitalized participants and showed rapid kinetics of appearance of neutralizing antibodies (50% and 80% of maximal activity reached after 11 and 17 days after symptoms onset, respectively) in hospitalized patients. No significant impact of age, gender or treatment on the neutralizing titers was observed in this limited cohort. These data identify a clear association of humoral immunity with disease severity and point to immune mechanisms other than antibodies as relevant players in COVID-19 protection.


2008 ◽  
Vol 82 (12) ◽  
pp. 5912-5921 ◽  
Author(s):  
Zane Kraft ◽  
Katharine Strouss ◽  
William F. Sutton ◽  
Brad Cleveland ◽  
For Yue Tso ◽  
...  

ABSTRACT The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against “easy-to-neutralize” clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.


2021 ◽  
Author(s):  
Jira Chansaenroj ◽  
Ritthideach Yorsaeng ◽  
Nasamon Wanlapakorn ◽  
Chintana Chirathaworn ◽  
Natthinee Sudhinaraset ◽  
...  

Abstract Understanding antibody responses after natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can guide the coronavirus disease 2019 (COVID-19) vaccine schedule. This study aimed to assess the dynamics of SARS-CoV-2 antibodies, including anti-spike protein 1 (S1) immunoglobulin (Ig)G, anti-receptor-binding domain (RBD) total Ig, anti-S1 IgA, and neutralizing antibody against wild-type SARS-CoV-2 in a cohort of patients who were previously infected with SARS-CoV-2. Between March and May 2020, 531 individuals with virologically confirmed cases of SARS-CoV-2 infection were enrolled in our immunological study. The neutralizing titers against SARS-CoV-2 were detected in 95.2%, 86.7%, 85.0%, and 85.4% of recovered COVID-19 patients at 3, 6, 9, and 12 months after symptom onset, respectively. The seropositivity rate of anti-S1 IgG, anti-RBD total Ig, anti-S1 IgA, and neutralizing titers remained at 68.6%, 89.6%, 77.1%, and 85.4%, respectively, at 12 months after symptom onset. The half-life of neutralizing titers was estimated at 100.7 days (95% confidence interval = 44.5 – 327.4 days, R2 = 0.106). These results support that the decline in serum antibody levels over time depends on the symptom severity, and the individuals with high IgG antibody titers experienced a significantly longer persistence of SARS-CoV-2-specific antibody responses than those with lower titers.


2007 ◽  
Vol 81 (12) ◽  
pp. 6187-6196 ◽  
Author(s):  
E. S. Gray ◽  
P. L. Moore ◽  
I. A. Choge ◽  
J. M. Decker ◽  
F. Bibollet-Ruche ◽  
...  

ABSTRACT The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.


2005 ◽  
Vol 79 (23) ◽  
pp. 14804-14814 ◽  
Author(s):  
Jason Hammonds ◽  
Xuemin Chen ◽  
Timothy Fouts ◽  
Anthony DeVico ◽  
David Montefiori ◽  
...  

ABSTRACT A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


Sign in / Sign up

Export Citation Format

Share Document