scholarly journals Cancer cells are uniquely susceptible to accumulation of MMBIR mutations

2020 ◽  
Author(s):  
Beth Osia ◽  
Thamer Alsulaiman ◽  
Tyler Jackson ◽  
Juraj Kramara ◽  
Suely Oliveira ◽  
...  

AbstractMicrohomology-mediated break-induced replication (MMBIR) is a mechanism of polymerase template switching at microhomology, which can produce complex genomic rearrangements (CGRs), underlies neurological and metabolic diseases, and contributes to cancer development. Yet, the extent of MMBIR activity in genomes is poorly understood due to difficulty in directly identifying MMBIR events by whole genome sequencing (WGS). Here, by using our newly developed MMBSearch software, we directly detect MMBIR events in human genomes and report substantial differences in frequency and complexity of MMBIR events between normal and cancer cells. MMBIR events appear only as germline variants in normal human fibroblast cells but readily accumulate de novo across several cancer types. Detailed analysis of MMBIR mutations in lung adenocarcinomas revealed MMBIR-initiated chromosome fusions that disrupted potential tumor suppressor genes and induced CGRs. Our findings document MMBIR as a trigger for widespread genomic instability and highlight MMBIR as a potential driver of tumor evolution.

2019 ◽  
Vol 20 (18) ◽  
pp. 4507 ◽  
Author(s):  
Lang ◽  
Guerrero-Giménez ◽  
Prince ◽  
Ackerman ◽  
Bonorino ◽  
...  

Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.


2021 ◽  
Vol 22 (4) ◽  
pp. 1701
Author(s):  
Go Woon Kim ◽  
Dong Hoon Lee ◽  
Yu Hyun Jeon ◽  
Jung Yoo ◽  
So Yeon Kim ◽  
...  

The significance of glutamine in cancer metabolism has been extensively studied. Cancer cells consume an excessive amount of glutamine to facilitate rapid proliferation. Thus, glutamine depletion occurs in various cancer types, especially in poorly vascularized cancers. This makes glutamine synthetase (GS), the only enzyme responsible for de novo synthesizing glutamine, essential in cancer metabolism. In cancer, GS exhibits pro-tumoral features by synthesizing glutamine, supporting nucleotide synthesis. Furthermore, GS is highly expressed in the tumor microenvironment (TME) and provides glutamine to cancer cells, allowing cancer cells to maintain sufficient glutamine level for glutamine catabolism. Glutamine catabolism, the opposite reaction of glutamine synthesis by GS, is well known for supporting cancer cell proliferation via contributing biosynthesis of various essential molecules and energy production. Either glutamine anabolism or catabolism has a critical function in cancer metabolism depending on the complex nature and microenvironment of cancers. In this review, we focus on the role of GS in a variety of cancer types and microenvironments and highlight the mechanism of GS at the transcriptional and post-translational levels. Lastly, we discuss the therapeutic implications of targeting GS in cancer.


2016 ◽  
Author(s):  
Ari Löytynoja ◽  
Nick Goldman

AbstractResequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement, and used this to study the role of template switch events in the origin of such mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor, and hundreds of events between two independently sequenced human genomes. While many of these are consistent with the template switch mechanism previously proposed for bacteria but not thought significant in higher organisms, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multi-nucleotide mutations and compensatory substitutions without invoking positive selection, complicated and speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for mapping and variant calling methods, and we show that detection of mutation clusters with current resequencing methodologies is difficult and many erroneous variant annotations exist in human reference data. Template switch events such as those we have uncovered may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo-assembled genomes will lead to improved understanding of genome variation and evolution.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nina Schömel ◽  
Sarah E. Hancock ◽  
Lisa Gruber ◽  
Ellen M. Olzomer ◽  
Frances L. Byrne ◽  
...  

Abstract UDP-glucose ceramide glucosyltransferase (UGCG) is the key enzyme in glycosphingolipid (GSL) metabolism by being the only enzyme that generates glucosylceramide (GlcCer) de novo. Increased UGCG synthesis is associated with pro-cancerous processes such as increased proliferation and multidrug resistance in several cancer types. We investigated the influence of UGCG overexpression on glutamine metabolism in breast cancer cells. We observed adapted glucose and glutamine uptake in a limited energy supply environment following UGCG overexpression. Glutamine is used for reinforced oxidative stress response shown by increased mRNA expression of glutamine metabolizing proteins such as glutathione-disulfide reductase (GSR) resulting in increased reduced glutathione (GSH) level. Augmented glutamine uptake is also used for fueling the tricarboxylic acid (TCA) cycle to maintain the proliferative advantage of UGCG overexpressing cells. Our data reveal a link between GSL and glutamine metabolism in breast cancer cells, which is to our knowledge a novel correlation in the field of sphingolipid research.


Author(s):  
N. P. Dmitrieva

One of the most characteristic features of cancer cells is their ability to metastasia. It is suggested that the modifications of the structure and properties of cancer cells surfaces play the main role in this process. The present work was aimed at finding out what ultrastructural features apear in tumor in vivo which removal of individual cancer cells from the cell population can provide. For this purpose the cellular interactions in the normal human thyroid and cancer tumor of this gland electron microscopic were studied. The tissues were fixed in osmium tetroxide and were embedded in Araldite-Epon.In normal human thyroid the most common type of intercellular contacts was represented by simple junction formed by the parallelalignment of adjacent cell membranees leaving in between an intermembranes space 15-20 nm filled with electronlucid material (Fig. 1a). Sometimes in the basal part of cells dilatations of the intercellular space 40-50 nm wide were found (Fig. 1a). Here the cell surfaces may form single short microvilli.


Cell Cycle ◽  
2014 ◽  
Vol 13 (15) ◽  
pp. 2415-2430 ◽  
Author(s):  
Lakshmi Reddy Bollu ◽  
Jiangong Ren ◽  
Alicia Marie Blessing ◽  
Rajasekhara Reddy Katreddy ◽  
Guang Gao ◽  
...  

Author(s):  
Stacey J. Scott ◽  
Xiaodun Li ◽  
Sriganesh Jammula ◽  
Ginny Devonshire ◽  
Catherine Lindon ◽  
...  

AbstractPolyploidy is present in many cancer types and is increasingly recognized as an important factor in promoting chromosomal instability, genome evolution, and heterogeneity in cancer cells. However, the mechanisms that trigger polyploidy in cancer cells are largely unknown. In this study, we investigated the origin of polyploidy in esophageal adenocarcinoma (EAC), a highly heterogenous cancer, using a combination of genomics and cell biology approaches in EAC cell lines, organoids, and tumors. We found the EAC cells and organoids present specific mitotic defects consistent with problems in the attachment of chromosomes to the microtubules of the mitotic spindle. Time-lapse analyses confirmed that EAC cells have problems in congressing and aligning their chromosomes, which can ultimately culminate in mitotic slippage and polyploidy. Furthermore, whole-genome sequencing, RNA-seq, and quantitative immunofluorescence analyses revealed alterations in the copy number, expression, and cellular distribution of several proteins known to be involved in the mechanics and regulation of chromosome dynamics during mitosis. Together, these results provide evidence that an imbalance in the amount of proteins implicated in the attachment of chromosomes to spindle microtubules is the molecular mechanism underlying mitotic slippage in EAC. Our findings that the likely origin of polyploidy in EAC is mitotic failure caused by problems in chromosomal attachments not only improves our understanding of cancer evolution and diversification, but may also aid in the classification and treatment of EAC and possibly other highly heterogeneous cancers.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Chen Chen ◽  
Samuel Haddox ◽  
Yue Tang ◽  
Fujun Qin ◽  
Hui Li

Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.


Sign in / Sign up

Export Citation Format

Share Document