scholarly journals cDC1 Coordinate Innate and Adaptive Responses in the Omentum required for T cell Priming and Memory

2020 ◽  
Author(s):  
David A. Christian ◽  
Thomas A. Adams ◽  
Tony E. Smith ◽  
Lindsey A. Shallberg ◽  
Derek J. Theisen ◽  
...  

ABSTRACTThe omentum in the peritoneal cavity contains fat associated lymphoid clusters (FALCs) whose role in the response to microbial challenge are poorly understood. After intraperitoneal immunization with Toxoplasma gondii, type I dendritic cells (cDC1) were critical to induce innate sources of IFN-γ required to recruit monocytes to the FALCs. The migration of infected peritoneal macrophages into T and B cell rich areas of the FALCs allowed the TCR-induced activation of parasite-specific T cells. Unexpectedly, cDC1 were not required for T cell priming but rather supported the expansion of parasite-specific CD8+ T cells. An agent-based mathematical model predicted that the lack of cDC1 would impact the early proliferative burst, and we confirmed that cDC1 were required for optimal T cell expression of nutrient uptake receptors and cell survival. These studies highlight that cDC1 in the FALCs have distinct roles in the co-ordination of the innate and adaptive responses to microbial challenge.

Rheumatology ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 420-429
Author(s):  
Takayuki Katsuyama ◽  
Hao Li ◽  
Suzanne M Krishfield ◽  
Vasileios C Kyttaris ◽  
Vaishali R Moulton

Abstract Objective CD4 T helper 1 (Th1) cells producing IFN-γ contribute to inflammatory responses in the pathogenesis of SLE and lupus nephritis. Moreover, elevated serum type II IFN levels precede the appearance of type I IFNs and autoantibodies in patient years before clinical diagnosis. However, the molecules and mechanisms that control this inflammatory response in SLE remain unclear. Serine/arginine-rich splicing factor 1 (SRSF1) is decreased in T cells from SLE patients, and restrains T cell hyperactivity and systemic autoimmunity. Our objective here was to evaluate the role of SRSF1 in IFN-γ production, Th1 differentiation and experimental nephritis. Methods T cell-conditional Srsf1-knockout mice were used to study nephrotoxic serum-induced nephritis and evaluate IFN-γ production and Th1 differentiation by flow cytometry. RNA sequencing was used to assess transcriptomics profiles. RhoH was silenced by siRNA transfections in human T cells by electroporation. RhoH and SRSF1 protein levels were assessed by immunoblots. Results Deletion of Srsf1 in T cells led to increased Th1 differentiation and exacerbated nephrotoxic serum nephritis. The expression levels of RhoH are decreased in Srsf1-deficient T cells, and silencing RhoH in human T cells leads to increased production of IFN-γ. Furthermore, RhoH expression was decreased and directly correlated with SRSF1 in T cells from SLE patients. Conclusion Our study uncovers a previously unrecognized role of SRSF1 in restraining IFN-γ production and Th1 differentiation through the control of RhoH. Reduced expression of SRSF1 may contribute to pathogenesis of autoimmune-related nephritis through these molecular mechanisms.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 213 ◽  
Author(s):  
Sigridur Jonsdottir ◽  
Victoria Fettelschoss ◽  
Florian Olomski ◽  
Stephanie C. Talker ◽  
Jelena Mirkovitch ◽  
...  

Background: Insect bite hypersensitivity (IBH) is an eosinophilic allergic dermatitis of horses caused by type I/IVb reactions against mainly Culicoides bites. The vaccination of IBH-affected horses with equine IL-5 coupled to the Cucumber mosaic virus-like particle (eIL-5-CuMVTT) induces IL-5-specific auto-antibodies, resulting in a significant reduction in eosinophil levels in blood and clinical signs. Objective: the preclinical and clinical safety of the eIL-5-CuMVTT vaccine. Methods: The B cell responses were assessed by longitudinal measurement of IL-5- and CuMVTT-specific IgG in the serum and plasma of vaccinated and unvaccinated horses. Further, peripheral blood mononuclear cells (PBMCs) from the same horses were re-stimulated in vitro for the proliferation and IFN-γ production of specific T cells. In addition, we evaluated longitudinal kidney and liver parameters and the general blood status. An endogenous protein challenge was performed in murine IL-5-vaccinated mice. Results: The vaccine was well tolerated as assessed by serum and cellular biomarkers and also induced reversible and neutralizing antibody titers in horses and mice. Endogenous IL-5 stimulation was unable to re-induce anti-IL-5 production. The CD4+ T cells of vaccinated horses produced significantly more IFN-γ and showed a stronger proliferation following stimulation with CuMVTT as compared to the unvaccinated controls. Re-stimulation using E. coli-derived proteins induced low levels of IFNγ+CD4+ cells in vaccinated horses; however, no IFN-γ and proliferation were induced following the HEK-eIL-5 re-stimulation. Conclusions: Vaccination using eIL-5-CuMVTT induces a strong B-cell as well as CuMVTT-specific T cell response without the induction of IL-5-specific T cell responses. Hence, B-cell unresponsiveness against self-IL-5 can be bypassed by inducing CuMVTT carrier-specific T cells, making the vaccine a safe therapeutic option for IBH-affected horses.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2400-2410 ◽  
Author(s):  
Yoshimi Enose-Akahata ◽  
Unsong Oh ◽  
Christian Grant ◽  
Steven Jacobson

AbstractCD8+ T cells contribute to central nervous system inflammation in human T-cell lymphotropic virus type I (HTLV-I)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). We analyzed CD8+ T-cell dysfunction (degranulation and IFN-γ production) and have demonstrated that CD8+ T cells of patients with HAM/TSP (HAM/TSP patients) spontaneously degranulate and express IFN-γ in ex vivo unstimulated culture. CD8+ T cells of HTLV-I asymptomatic carriers and healthy donors did not. Spontaneous degranulation was detected in Tax11-19/HLA-A*201 tetramer+ cells, but not in CMV pp65 tetramer+ cells. Interestingly, degranulation and IFN-γ production in CD8+ T cells was induced by coculture with autologous CD14+ cells, but not CD4+ T cells, of HAM/TSP patients, which correlated with proviral DNA load in CD14+ cells of infected patients. Moreover, the expression of IL-15, which induced degranulation and IFN-γ production in infected patients, was enhanced on surface of CD14+ cells in HAM/TSP patients. Blockade of MHC class I and IL-15 confirmed these results. Thus, CD8+ T-cell dysregulation was mediated by both virus infection and enhanced IL-15 on CD14+ cells in HAM/TSP patients. Despite lower viral expression than in CD4+ T cells, HTLV-I–infected or –activated CD14+ cells may be a heretofore important but under recognized reservoir particularly in HAM/TSP patients.


2002 ◽  
Vol 70 (4) ◽  
pp. 1957-1964 ◽  
Author(s):  
Renu Dudani ◽  
Yvan Chapdelaine ◽  
Henk van Faassen ◽  
Dean K. Smith ◽  
Hao Shen ◽  
...  

ABSTRACT Induction of T-cell memory by vaccination ensures long-term protection against pathogens. We determined whether on-going inflammatory responses during vaccination influenced T-cell priming. A preexposure of mice to Mycobacterium bovis BCG impaired their subsequent ability to prime T cells against Listeria monocytogenes. This was characterized by a decrease in L. monocytogenes-specific gamma interferon (IFN-γ)-secreting CD4+ and CD8+ T cells. The intensity of T-cell priming towards L. monocytogenes depended on the extent of L. monocytogenes expansion, and a cessation of this expansion caused by M. bovis BCG-induced inflammation resulted in impairment in T-cell priming. A challenge of M. bovis BCG-infected mice with a higher L. monocytogenes dose increased L. monocytogenes survival and restored T-cell priming towards L. monocytogenes. Impairment in T-cell priming towards L. monocytogenes due to M. bovis BCG-induced inflammation resulted in a compromised protective efficacy in the long term after mice were rechallenged with L. monocytogenes. Preexisting inflammation selectively impaired T-cell priming for replicating immunogens as CD8+ T-cell response to ovalbumin administered as an inert antigen (ovalbumin-archaeosomes) was enhanced by M. bovis BCG preimmunization, whereas priming towards ovalbumin administered as a live immunogen (L. monocytogenes-ovalbumin) was impaired. Thus, depending on the nature of the immunogen, the presence of prior inflammatory responses may either impede or boost vaccine efficacy.


2006 ◽  
Vol 203 (6) ◽  
pp. 1413-1418 ◽  
Author(s):  
Ken Koguchi ◽  
David E. Anderson ◽  
Li Yang ◽  
Kevin C. O'Connor ◽  
Vijay K. Kuchroo ◽  
...  

T cell immunoglobulin- and mucin domain–containing molecule (TIM)3 is a T helper cell (Th)1–associated cell surface molecule that regulates Th1 responses and promotes tolerance in mice, but its expression and function in human T cells is unknown. We generated 104 T cell clones from the cerebrospinal fluid (CSF) of six patients with multiple sclerosis (MS) (n = 72) and four control subjects (n = 32) and assessed their cytokine profiles and expression levels of TIM3 and related molecules. MS CSF clones secreted higher amounts of interferon (IFN)-γ than did those from control subjects, but paradoxically expressed lower levels of TIM3 and T-bet. Interleukin 12–mediated polarization of CSF clones induced substantially higher amounts of IFN-γ secretion but lower levels of TIM3 in MS clones relative to control clones, demonstrating that TIM3 expression is dysregulated in MS CSF clones. Reduced levels of TIM3 on MS CSF clones correlated with resistance to tolerance induced by costimulatory blockade. Finally, reduction of TIM3 on ex vivo CD4+ T cells using small interfering (si)RNA enhanced proliferation and IFN-γ secretion, directly demonstrating that TIM3 expression on human T cells regulates proliferation and IFN-γ secretion. Failure to up-regulate T cell expression of TIM3 in inflammatory sites may represent a novel, intrinsic defect that contributes to the pathogenesis of MS and other human autoimmune diseases.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15211-e15211
Author(s):  
Lauren Virginia Wood ◽  
Siva K Gandhapudi ◽  
Karuna Sundarapandiyan ◽  
Frank K Bedu-Addo ◽  
Gregory Conn ◽  
...  

e15211 Background: Immunotherapy approaches are limited in their ability to induce antigen-specific CD8+ T cells in vivo able to recognize and kill tumor cells. We developed a novel immunotherapy approach using enantiomerically pure, R-DOTAP cationic lipid nanoparticles and tumor-derived T cell antigens, and previously demonstrated that R-DOTAP formulations efficiently prime cytotoxic T cells through enhanced cross presentation and induction of type I interferons.[1] A phase I clinical trial of a R-DOTAP HPV16 peptide formulation confirmed induction of strong in vivo HPV-specific CD8+ cytolytic T-cells without associated systemic toxicities. In this study, we assessed R-DOTAP nanoparticle formulations containing whole protein (ovalbumin) or long multi-epitope peptides from the tumor antigen TARP (T-cell alternate reading frame protein): a 58-residue protein overexpressed in prostate and breast cancers, documented to be immunogenic in humans. Methods: R-DOTAP formulations were prepared containing ovalbumin (OVA) or TARP peptides. C57BL/6K mice were immunized with 10 μg/mouse of OVA plus R-DOTAP, CFA or sucrose on Days 0, 15 and 30. OVA-specific cellular and humoral responses following vaccination were assessed by measuring splenic CD4 and CD8 T cell IFN-γ production and circulating OVA-specific antibodies in serum. HLA-A2 transgenic mice (AAD mice) were vaccinated with long, multi-epitope TARP peptides delivered as an R-DOTAP admixture or with CFA or sucrose on Days 0 and 7. Antigen-specific T cell responses were measured by IFN-γ ELISpot assay. Results: OVA R-DOTAP formulations induced strong antigen-specific effector CD4 and CD8 immune and memory responses detected 7 and 30 days, respectively, following vaccination as well as OVA-specific antibody responses. In TARP peptide vaccinated mice, R-DOTAP formulations were able to present multiple CD8 T cell epitopes and stimulate responses that were superior to CFA. Conclusions: Our results suggest that R-DOTAP is a versatile immune activating therapy that can be formulated with long, multi-epitope tumor-derived peptides or whole proteins. R-DOTAP formulations induce quantitatively robust antigen-specific CD4 and CD8 T cells in vivo compared to well-established immune stimulants. Reference: 1.Gandhapudi SK, Ward M, Bush JP et al. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. J Immunol 2019;202:3524-3536


2013 ◽  
Vol 27 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Anne Richter ◽  
Sonja S. Schmucker ◽  
Philipp R. Esser ◽  
Verena Traska ◽  
Verena Weber ◽  
...  

2006 ◽  
Vol 81 (5) ◽  
pp. 2187-2195 ◽  
Author(s):  
Yue Peng ◽  
Fan-ching Lin ◽  
Paulo H. Verardi ◽  
Leslie A. Jones ◽  
Michael B. McChesney ◽  
...  

ABSTRACT To increase the safety and efficacy of human immunodeficiency virus vaccines, several groups have conducted studies using the macaque model with single-cycle replicating simian immunodeficiency viruses (SIVs). However, these constructs had poor or diminished efficacy compared to live attenuated vaccines. We previously showed that immunization of macaques with live attenuated SIV with a deletion in the nef gene and expressing gamma interferon (IFN-γ) results in significantly enhanced safety and efficacy. To further enhance safety, we constructed and characterized single-cycle SIVs, pseudotyped with the glycoprotein of vesicular stomatitis virus, expressing different levels of macaque IFN-γ. Expression of IFN-γ did not alter the infectivity or antigenicity of pseudotyped SIV. The transduction of dendritic cells (DCs) by IFN-γ-expressing particles resulted in the up-regulation of costimulatory and major histocompatibility complex molecules. Furthermore, T cells primed with DCs transduced by SIV particles expressing high levels of IFN-γ and then stimulated with SIV induced significantly higher numbers of spot-forming cells in an enzyme-linked immunospot assay than did T cells primed with DCs transduced with SIV particles lacking the cytokine. In conclusion, we demonstrated that the transduction of DCs in vitro with pseudotyped single-cycle SIVs expressing IFN-γ increased DC activation and augmented T-cell priming activity.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2459-2466 ◽  
Author(s):  
Anders Österborg ◽  
Qing Yi ◽  
Lotta Henriksson ◽  
Jan Fagerberg ◽  
Susanne Bergenbrant ◽  
...  

Idiotypic structures expressed on the myeloma Ig protein might be regarded as a tumor-specific antigen. Five patients with IgG myeloma were immunized with the purified serum M-component by repeated intradermal injections together with soluble granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients developed an idiotype (Id)-specific T-cell immunity, defined as blood T cells predominantly secreting interferon-γ (IFN-γ) and interleukin-2 (IL-2) (type I cells). Id-specific DNA synthesis was induced in one patient. Delayed-type hypersensitivity against the Id was not evoked. The specific IFN-γ/IL-2 T-cell response was inhibited (46% to 100%) by a major histocompatibility complex (MHC) class I monoclonal antibody (MoAb) in all five patients. A 5% to 37% inhibition by an MHC class II MoAb was seen in four patients. CD4+ as well as CD8+ T cells enriched by magnetic microbeads contained Id-specific cells. The T cells recognized peptides corresponding to the complementarity-determining regions 1, 2, and 3 of the heavy chain of the Id. There was a transient rise of B cells producing IgM anti-idiotypic antibodies in all patients. The results indicate that immunization of myeloma patients using the autologous M-component and soluble GM-CSF may evoke an Id-specific predominantly MHC class I–restricted type I T-cell response.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2459-2466 ◽  
Author(s):  
Anders Österborg ◽  
Qing Yi ◽  
Lotta Henriksson ◽  
Jan Fagerberg ◽  
Susanne Bergenbrant ◽  
...  

Abstract Idiotypic structures expressed on the myeloma Ig protein might be regarded as a tumor-specific antigen. Five patients with IgG myeloma were immunized with the purified serum M-component by repeated intradermal injections together with soluble granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients developed an idiotype (Id)-specific T-cell immunity, defined as blood T cells predominantly secreting interferon-γ (IFN-γ) and interleukin-2 (IL-2) (type I cells). Id-specific DNA synthesis was induced in one patient. Delayed-type hypersensitivity against the Id was not evoked. The specific IFN-γ/IL-2 T-cell response was inhibited (46% to 100%) by a major histocompatibility complex (MHC) class I monoclonal antibody (MoAb) in all five patients. A 5% to 37% inhibition by an MHC class II MoAb was seen in four patients. CD4+ as well as CD8+ T cells enriched by magnetic microbeads contained Id-specific cells. The T cells recognized peptides corresponding to the complementarity-determining regions 1, 2, and 3 of the heavy chain of the Id. There was a transient rise of B cells producing IgM anti-idiotypic antibodies in all patients. The results indicate that immunization of myeloma patients using the autologous M-component and soluble GM-CSF may evoke an Id-specific predominantly MHC class I–restricted type I T-cell response.


Sign in / Sign up

Export Citation Format

Share Document