scholarly journals Epigenetic suppression of SLFN11 in germinal center B cells in the process of the dynamic expression change during B-cell development

2020 ◽  
Author(s):  
Fumiya Moribe ◽  
Momoko Nishikori ◽  
Hiroyuki Sasanuma ◽  
Remi Akagawa ◽  
Hiroshi Arima ◽  
...  

<strong>Background</strong>   SLFN11 enhances cellular toxicity of genotoxic anti-cancer agents, and its important role under physiological conditions has not been appreciated yet. Somatic hypermutations and class switch recombination that can cause physiological genotoxic stress arise in germinal center B cells (GCBs). GCBs are a major origin of B-cell lymphomas that are frequently treated by cytosine arabinoside, a genotoxic anti-cancer agent.   <strong>Objective</strong>   To clarify the expression profile of <em>SLFN11</em> in different stages of B cells and B-cell lymphomas.   <strong>Methods</strong>   We analyzed the expression of <em>SLFN11</em> by mining publicly available databases for different stages of normal B cells and various types of B-cell lymphoma lines and also by performing immunohistochemical staining of human lymph nodes. We investigated the effects of two epigenetic modifiers, an EZH2 inhibitor, tazemetostat (EPZ6438) and a histone deacetylase inhibitor, panobinostat (LBH589) on <em>SLFN11</em> expression in B-cell lymphoma lines and examined the therapeutic efficacy of these epigenetic modifiers in the combination with cytosine arabinoside.   <strong>Results</strong>   <em>SLFN11 </em>expression was specifically low in GCBs compared to non-GCBs, which was consolidated by the immunohistochemical staining for SLFN11 with human lymph nodes. <em>SLFN11</em> expression levels in B-cell lymphoma lines largely correlated to those of their normal counterparts. The epigenetic modifiers upregulated <em>SLFN11</em> expression in GCB-derived lymphomas and made the lymphomas further susceptible to cytosine arabinoside.   <strong>Conclusions</strong>   The expression of <em>SLFN11</em> may be epigenetically suppressed in GCBs and GCB-derived lymphomas. GCB-derived lymphomas with low <em>SLFN11</em> expression can be treated by the combination of epigenetic modifiers and cytosine arabinoside.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0237554
Author(s):  
Fumiya Moribe ◽  
Momoko Nishikori ◽  
Tsuyoshi Takashima ◽  
Daiki Taniyama ◽  
Nobuyuki Onishi ◽  
...  

Background SLFN11 has recently been reported to execute cancer cells harboring replicative stress induced by DNA damaging agents. However, the roles of SLFN11 under physiological conditions remain poorly understood. Germinal center B-cells (GCBs) undergo somatic hypermutations and class-switch recombination, which can cause physiological genotoxic stress. Hence, we tested whether SLFN11 expression needs to be suppressed in GCBs during B-cell development. Objective To clarify the expression profile of SLFN11 in different developmental stages of B-cells and B-cell-derived cancers. Methods We analyzed the expression of SLFN11 by mining cell line databases for different stages of normal B-cells and various types of B-cell-derived cancer cell lines. We performed dual immunohistochemical staining for SLFN11 and B-cell specific markers in normal human lymphatic tissues. We tested the effects of two epigenetic modifiers, an EZH2 inhibitor, tazemetostat (EPZ6438) and a histone deacetylase inhibitor, panobinostat (LBH589) on SLFN11 expression in GCB-derived lymphoma cell lines. We also examined the therapeutic efficacy of these drugs in combination with cytosine arabinoside and the effects of SLFN11 on the efficacy of cytosine arabinoside in SLFN11-overexpressing cells. Results SLFN11 mRNA level was found low in both normal GCBs and GCB-DLBCL (GCB like-diffuse large B-cell lymphoma). Immunohistochemical staining showed low SLFN11 expression in GCBs and high SLFN11 expression in plasmablasts and plasmacytes. The EZH2 and HDAC epigenetic modifiers upregulated SLFN11 expression in GCB-derived lymphoma cells and made them more susceptible to cytosine arabinoside. SLFN11 overexpression further sensitized GCB-derived lymphoma cells to cytosine arabinoside. Conclusions The expression of SLFN11 is epigenetically suppressed in normal GCBs and GCB-derived lymphomas. GCB-derived lymphomas with low SLFN11 expression can be treated by the combination of epigenetic modifiers and cytosine arabinoside.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2008-2008
Author(s):  
Ryan T Phan ◽  
Khang Nguyen ◽  
Sonia Romero ◽  
Alice Nicolson ◽  
Phillipp Nham ◽  
...  

Abstract Abstract 2008 Most human B-cell lymphomas represent mature phenotypes of germinal center (GC) or post-GC origin and are frequently associated with chromosomal translocations, often involving the rearrangement of immunoglobulin (Ig) loci to various cellular oncogenes, leading to oncogenic activation. The mechanisms underlying these processes, however, are not well understood. Several studies suggest that these genetic lesions arise from errors of physiologic DNA rearrangements in GC B cells, namely class switch recombination (CSR) and somatic hypermutation (SHM). Here we report the generation of a mouse model in which DNA breaks are physiologically instituted in mature B cells, yet inefficiently repaired via specific deletion of DNA repair gene XRCC4 in GC B cells, thus effectively creating an in vivo environment for errors in DNA rearrangements. These activated B cells exhibit significant increased chromosomal IgH locus breaks and reduced CSR. In p53-deficient background, these mice develop B-cell lymphoma from 5.5 to 16 months. These clonally developed tumors characteristically harbor chromosomal translocations and phenotypically resemble mature phenotypes. Many of these tumors bear mutated V genes, suggesting that those cells have transited through GC. Thus, this mouse model mimics human B-cell lymphoma and might be useful for the development of therapeutic interventions in B-cell lymphoma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1589-1589 ◽  
Author(s):  
Miguel Alcoceba ◽  
Elena Sebastián ◽  
Ana Balanzategui ◽  
Luis Marín ◽  
Santiago Montes-Moreno ◽  
...  

Abstract Abstract 1589 Introduction: Acquired potentially N-glycosylation sites are produced by somatic hypermutation (SHM) in the immunoglobulin (Ig) variable region. This phenomenon is produced in ∼9% of normal B-cells and seems to be related to certain B-cell lymphoproliferative disorders (B-LPDs) such as follicular lymphoma (FL, 79%), endemic Burkitt lymphoma (BL, 82%) and diffuse large B-cell lymphoma (DLBCL, 41%). These data suggest that new potential N-glycosylation sites could be related to germinal center B (GCB)-LPDs. By contrast, in other B-LPDs, such as chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), MALT lymphoma, Waldenström macroglobulinemia (WM) or multiple myeloma (MM), these modifications have not been analyzed in deep. Aims: To evaluate the acquisition of potential N-glycosylation sites in B-LPDs, including immunohystochemical DLBCL subtypes (GCB and non-GCB) and specific non-GCB-LPDs, such as hairy cell leukemia (HCL), splenic marginal-zone lymphoma (SMZL), CLL, MCL, ocular extranodal marginal zone lymphoma (OAEMZL), MM and WM. Patients: A total of 953 sequences (203 from our group and 750 previously published sequences) of B-LPDs were included. Diagnosis distribution was as follows: DLBCL (n=235), MCL (n=235), CLL (n=166), MM (n=96), OAEMZL (n=82), SMZL (n=68), WM (n=38) and HCL (n=33). Methods: Acquired N-glycosylation sites were counted according to the sequence Asn-X-Ser/Thr, where X could be any amino acid except Pro. Natural motifs in germline sequences of IGHV1–08, IGHV4–34 e IGHV-5a were not considered. Fisher test was used to perform comparisons between groups. To distinguish DLBCL biological subtypes (GCB and non-GCB DLBCL), Hans' algorithm was used. Results: A total of 83 out of the 235 DLBCL cases acquired at least a new N-glycosylation site, a higher value than in normal B-cells (35% vs. 9%, p<0.0001). Higher incidence of these motifs in the group of GCB as compared to non-GCB DLBCL were observed (52% vs. 20%, p<0.0001). Those cases diagnosed of HCL, CLL, MCL, MM, WM, OAEMZL and SMZL presented a reduced number of new N-glycosylation sites, showing similar values than normal B-cells (range 3–18%, p=ns). Conclusions: We described for the first time the pattern of N-glycosylation in HCL, SMZL, OAEMZL and in the immunohystochemical DLBCL subtypes, where the GCB-DLBCL showed a higher number of new N-glycosylation sites with respect to non-GCB DLBCL and other non-GCB-LPDs. The presence of novel N-glycosylation sites in FL, BL and in GCB-DLBCL strongly suggests that these motifs are characteristic of the germinal center B-LPDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4308-4308
Author(s):  
Shin-ichiro Fujiwara ◽  
Raine Tatara ◽  
Kiyoshi Okazuka ◽  
Iekuni Oh ◽  
Ken Ohmine ◽  
...  

Abstract Background Interleukin 2 (IL-2) is an important cytokine that controls the proliferation and differentiation of not only T- but also B-lymphocytes. Recently, we reported that CD25 (IL-2 receptor alpha chain, IL-2R) is expressed in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), and high expression of CD25 in the two types of lymphoma is correlated with a poor prognosis following chemotherapy regimens containing rituximab (ASH annual meeting, 2011 118:2666, 2012 120:1543). We evaluated the clinical significance of CD25 expression in a larger series of different mature B-cell lymphomas (BCL). Patients and Methods Four hundred and thirty-seven newly diagnosed patients who were admitted to our hospital between 2002 and 2013 were retrospectively evaluated. Lymph node or related tissue biopsy samples of BCL were analyzed using flow cytometry, as follows: 182 patients, DLBCL; 92, FL; 48, chronic lymphocytic leukemia (CLL); 21, mantle cell lymphoma (MCL); 23, marginal zone lymphoma (MZL); 8, Burkitt lymphoma (BL); 18, B-cell lymphoma unclassifiable with features intermediate between BL and DLBCL (BL/DLBCL); 5, lymphoplasmacytic lymphoma (LPL); and 39, reactive lymphadenopathy with sufficient B-cells. CD25-positivity was defined as >20% of clonal B-cells in a gated region. Results CD25 expression in patients with MCL, CLL, MZL, and DLBCL was significantly higher than that in patients with reactive lymphadenopathy (P<0.001,<0.001, =0.019, and <0.001, respectively). BL and FL, which were derived from germinal center B-cells, did not express CD25. These results indicate that pre- or post- germinal center-derived B-cells, activated by IL-2/IL-2R signaling, may give rise to CD25+ BCL such as CD25+ MCL, CLL, MZL, and DLBCL. The highest median CD25 expression (41.5%) was observed in MCL. CD25 expression was higher in MCL than CD5+ BCL (CLL and CD5+ DLBCL) (median, 41.5 vs. 16.9%, respectively; P<0.001). With a cut-off value of 60% CD25-positivity, patients with CD25-high (>60%) MCL (n=9) were not treated with aggressive chemotherapy regimens such as Hyper-CVAD due to their age and characteristics, compared with those with CD25-low (<60%) MCL (n=12) (11.1 vs. 72.7%, respectively, P=0.021). In patients with CLL, the range of CD25 expression was wide (0.4-90.7%), and 29 patients (60%) showed CD25-positivity (CD25+ CLL). CD25+ CLL showed higher soluble IL-2R (sIL-2R) levels and an inferior overall survival (OS) than CD25- CLL (median sIL-2R, 2,195 vs. 706 U/ml P=0.047; 5-year OS, 62.7 vs. 100%; P=0.037). There was a significant correlation between levels of CD25 and sIL-2R (r=0.53, P=0.0053). It is clinically important to distinguish between DLBCL and BCL involving MYC oncogene rearrangement (BL and BL/DLBCL, MYC+ BCL). The former showed higher CD25 expression than the latter (median, 10.2 vs. 2.1%, respectively, P=0.04). The progression-free survival rate (PFS) after rituximab containing chemotherapy was inferior in patients with CD25+ DLBCL (n=72) than those with CD25- DLBCL (n=110) and MYC+ BCL (5-year PFS, 49 vs. 70.4, 66.3%, respectively). In patients with DLBCL, central nerve system (CNS) involvement was observed in 15 patients (7 at diagnosis and 8 at relapse). CD25+ DLBCL showed a higher frequency of CNS involvement than CD25– DLBCL (13.8 vs. 4.5%, respectively, P=0.049). Regarding MZL, CD25 was highly expressed in nodal MZL, but it showed a low expression in splenic MZL. Regarding the sites of extranodal MZL, CD25 expression was lower in the thyroid than at other sites (median, 5.1 vs. 21.2%, respectively, P=0.37). There were some differences between CD25+ (n=9) and CD25- (n=14) MZL concerning the presence of B symptoms (33.3 vs. 0%, respectively) and advanced stage (66.6 vs. 35.7%, respectively). Conclusion CD25 expression using flow cytometry can potentially provide diagnostic and prognostic implications on BCL patient. The high expression of CD25 in MCL and CLL suggests the possibility of targeted anti-CD25 immunotherapy. These findings may shed light on the role of CD25 expression in B-cell lymphomagenesis. Disclosures: No relevant conflicts of interest to declare.


Cancer Cell ◽  
2007 ◽  
Vol 12 (3) ◽  
pp. 280-292 ◽  
Author(s):  
Masumichi Saito ◽  
Jie Gao ◽  
Katia Basso ◽  
Yukiko Kitagawa ◽  
Paula M. Smith ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4169-4169
Author(s):  
Antonio Sacco ◽  
Yawara Kawano ◽  
Michele Moschetta ◽  
Jihye Park ◽  
Oksana Zavidij ◽  
...  

Abstract Background. p53 is a well defined tumor suppressor involved in the modulation of cell proliferation, cell cycle progression and programmed cell death. BLIMP-1 plays a crucial role in modulating B-cell differentiation towards Ig-secreting plasma cells, and it acts as a tumor suppressor, as documented in both diffuse large B-cell lymphoma and Burkitt lymphoma. Whether B-cell specific loss of both p53 and BLIMP-1 may favor a B-cell lymphoma phenotype remains unanswered. We therefore aimed to generate in vivo dual p53/BLIMP-1-floxed conditional inactivation in B-cells, and to define the functional relevance of both p53 and BLIMP-1 n B-cell lymphomagenesis in vivo Methods.Cre recombinase under the control of CD19 promoter (C57BL/6 CD19Cre/Cre) mice were crossed with either C57BL/6 BLIMPflox/flox or C57BL/6 p53flox/flox mice to achieve deletion of BLIMP or p53, respectively, in B cells. Secondly, CD19Cre/Cre BLIMPflox/flox mice were crossed with CD19Cre/Cre p53flox/flox to achieve concomitant deletion of both BLIMP and p53 in B cells (CD19Cre/Cre BLIMPflox/flox p53flox/flox), referred as CD19/Bl-/p53- mice. Transgenic experimental mice (CD19/Bl-/p53-) where characterized for B cell infiltration using immunohistochemistry, flow cytometry; clonotypic immunoglobulin heavy-chain rearrangement was assessed by Southern Blotting. Whole exome sequencing was performed using DNA isolated from B220+ selected cells obtained from pathological lymph nodes of CD19/Bl-/p53- mice and from matched tail-derived tissues, used as germline (Illumina HiSeq 2500 platform; Agilent SureSelectXT). MTT assay was used to BTK-inhibitor-dependent cytotoxicity using CD19/Bl-/p53-derived B220 cells. Results.We generated dual p53/BLIMP-1-floxed conditional inactivation in B-cells, using mice expressing Cre recombinase under the control of CD19 promoter. 100% of the CD19/Bl-/p53- mice presented with diffuse lymphadenomegalies, and splenomegaly, hepatomegaly (90.3% and 77.4%, respectively). Other clinical manifestations included presence of ascites and hind lymb paralysis (12.9% and 19.3%, respectively). The CD19/Bl-/p53- showed worse survival compared to Bl-/p53- mice non-expressing the CD19/Cre recombinase, CD19/p53-, or CD19/Bl- (363, 469.5, 460.5, and 770 days, respectively). H.E. staining of CD19/Bl-/p53--derived lymph nodes, defined a nodal architecture with a monomorphic population of large sized atypical lymphoid cells with finely clumped and dispersed chromatin, and multiple basophilic medium sized, paracentrally situated nucleoli. A "starry sky" pattern was also observed. Overall, these features are compatible with a high-grade lymphomas. IHC analysis confirmed a marked positivity for B220 staining (TdT, Bcl6, CD138 and CD4, CD8 negative). Tumors were confirmed to be B220+/IgM+, with either Igk- or Ig-lambda-restriction as demonstrated by flow cytometry; and either mono- or bi-clonal, as demonstrated by Southern blotting, thus further confirming the clonal transformation induced by dual BLIMP/p53 deletion in B cells. Whole exome sequencing was performed from B220+ selected cells obtained from pathological lymph nodes of CD19/Bl-/p53- mice and identified 143 SNVs. Among them, non-synonymous somatic mutations were mapped on genes involved in the regulation of focal adhesion, PDGF signaling, p53-downstream pathway, and lipoprotein metabolism. B220+ cells selected from CD19/Bl-/p53--derived lymph nodes were implanted subcutaneously into recipient SCID/Bg mice (n: 10), and presented with 100% engraftment, with a monomorphic lymphoid infiltration of B220+ and IgM+ cells. B220 positive cells were selected from the s.q. tumor and intravenous injected into recipient SCID/Bg (n: 10) and BL/6 mice (n: 10). Engraftment was demonstrated in all the mice, where hepatomegaly, splenomegaly and hind lymb paralysis were observed. Infiltration of B220+ cells was documented within bone marrow, liver and spleen. We next investigated the anti-tumor activity of BTK-inhibitor, and found that B220+ cells selected from lymph nodes harvested from CD19/Bl-/p53-mice were sensitive to ibrutinib treatment. Conclusion. These studies demonstrate that the specific dual inactivation of p53 and BLIMP in B-cells promotes oncogenic transformation, resulting in aggressive B-cell lymphoma development. Disclosures Ghobrial: Celgene: Other: Advisory Board; BMS: Other: Advisory Board; Amgen: Other: Advisory Board; Takeda: Other: Advisory Board; Janssen: Other: Advisory Board. Roccaro:Takeda Pharmaceutical Company Limited: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2386-2391
Author(s):  
Haopeng Yang ◽  
Michael R. Green

Abstract Affinity maturation and terminal differentiation of B cells via the germinal center reaction is a complex multistep process controlled by transcription factors that induce or suppress large dynamic transcriptional programs. This occurs via the recruitment of coactivator or corepressor complexes that epigenetically regulate gene expression by post-translationally modifying histones and/or remodeling chromatin structure. B-cell–intrinsic developmental programs both regulate and respond to interactions with other cells in the germinal center that provide survival and differentiation signals, such as T-follicular helper cells and follicular dendritic cells. Epigenetic and transcriptional programs that naturally occur during B-cell development are hijacked in B-cell lymphoma by genetic alterations that directly or indirectly change the function of transcription factors and/or chromatin-modifying genes. These in turn skew differentiation toward the tumor cell of origin and alter interactions between lymphoma B cells and other cells within the microenvironment. Understanding the mechanisms by which genetic alterations perturb epigenetic and transcriptional programs regulating B-cell development and immune interactions may identify opportunities to target these programs using epigenetic-modifying agents. Here, we discuss recently published studies centered on follicular lymphoma and diffuse large B-cell lymphoma within the context of prior knowledge, and we highlight how these insights have informed potential avenues for rational therapeutic interventions.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 351-358 ◽  
Author(s):  
Santiago Montes-Moreno ◽  
Giovanna Roncador ◽  
Lorena Maestre ◽  
Nerea Martínez ◽  
Lydia Sanchez-Verde ◽  
...  

GCET1 (germinal center B cell–expressed transcript-1) gene codes for a serpin expressed in germinal center (GC) B cells. Following the observation that follicular lymphoma cases exhibit an increased level of Gcet1 expression, compared with follicular hyperplasia, we have characterized Gcet1 protein expression in human tissues, cell lines, and a large series of lymphomas. To this end, we have performed immunohistochemical and Western blot analyses using a newly generated monoclonal antibody that is reactive in paraffin-embedded tissues. Our results demonstrate that Gcet1 is expressed exclusively by neoplasms hypothetically to be arrested at the GC stage of differentiation, including follicular lymphoma, nodular lymphocyte predominant Hodgkin lymphoma, and a subset of diffuse large B-cell lymphoma, T-cell/histiocyte rich B-cell lymphoma, and Burkitt lymphoma. Within these tumors, Gcet-1 protein expression is restricted to a subset of GC B cells, establishing the existence of a distinct heterogeneity among normal and neoplastic GC B cells. None of the other B-cell lymphomas, that is, chronic lymphocytic leukemia, splenic marginal zone lymphoma, and mantle cell lymphoma, was Gcet1+, which underlines the potential utility of Gcet1 expression in lymphoma diagnosis. The results of RNA and protein expression should prompt further investigation into the role of Gcet1 in regulating B-cell survival.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A879-A880
Author(s):  
Abir Zainal ◽  
Jhansi Maradana ◽  
Mira Torres

Abstract Introduction: T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare form of large B-cell lymphoma, which usually involves the lymph nodes exclusively. We describe a patient with Hashimoto’s thyroiditis who was discovered to have THRLBCL arising from the thyroid. Clinical Case: A 78-year-old female with a history of Hashimoto’s thyroiditis noted increase in the size of her left thyroid lobe for two months despite normal TSH on Levothyroxine, prompting an ultrasound which revealed several enlarged left sided cervical lymph nodes and an enlarged left thyroid gland. Cytology from an FNA of a left level 3 lymph node showed atypical lymphoid infiltrate featuring scattered large atypical cells in a background of small lymphocytes. Immunohistochemical testing was PAX5+, CD30- and CD15-. Cytology from an FNA of left thyroid revealed identical changes and immunohistochemistry demonstrated PAX5+ and CD20+. Concurrent flow cytometric studies demonstrated increased CD4 to CD8 ratio among T cells. Excisional biopsy of a left cervical lymph node confirmed a diagnosis of THRLBCL. PET/CT exhibited lymphadenopathy above her diaphragm and splenic involvement. Her bone marrow biopsy was negative for involvement. She was deemed Stage III with international prognostic index (IPI) of 2 corresponding with low-intermediate risk. She was commenced on chemotherapy R-CHOP with plan to complete 6 cycles. Discussion: THRLBCL is characterized by scattered atypical B lymphocytes on a background of T lymphocytes and histiocytes. Usually, T-cells are predominantly CD8+, in contrast to our patient. Some studies identified cases of predominant CD4+ and PD1+ T cells. Cytology revealed scattered small B-cells and large B-cells, a feature that is not typically seen in THRLBCL. A diagnosis of diffuse transformation of nodular lymphocyte predominant Hodgkin lymphoma was considered but the diffuse proliferation outside of CD21+ and involvement of the thyroid is not compatible with such diagnosis. Similarly, a diagnosis of follicular helper T-cell lymphoma with admixed large B-cells was considered but while PD1+ CD4+ T cells are present, there was no aberrant antigen expression by flow cytometry or T cell clonality. THRLBCL mainly involves lymph nodes and presents at advanced Ann Arbor stages with high IPI. Malignant lymphomas of the thyroid gland are exceedingly rare, accounting for 2% of thyroid cancers, out of which the literature reveals a single case report of THRLBCL arising from the thyroid. THRLBCL represents an aggressive form of lymphoma and is treated according to stage-matched DLBCL, although the effects of Rituximab in this population is variable. Conclusion: Hashimoto’s is considered a risk for thyroid lymphoma usually diffuse large B-cell lymphoma and MALT lymphoma. We present a rare case of THRLBCL occurring in the setting of Hashimoto’s with acute thyroid gland enlargement.


Sign in / Sign up

Export Citation Format

Share Document