scholarly journals Oxidized RNA Bodies compartmentalize translation quality control in Saccharomyces cerevisiae

2020 ◽  
Author(s):  
James S. Dhaliwal ◽  
Cristina Panozzo ◽  
Lionel Benard ◽  
William Zerges

ABSTRACTCytoplasmic RNA granules compartmentalize phases of the translation cycle. We previously reported on the localization of oxidized RNA in human cells to cytoplasmic foci called oxidized RNA bodies (ORBs). Oxidized mRNAs are substrates of translation quality control, wherein defective mRNAs and nascent polypeptides are released from stalled ribosomes and targeted for degradation. Therefore, we asked whether ORBs compartmentalize translation quality control. Here, we identify ORBs in Saccharomyces cerevisiae and characterize them using fluorescence microscopy and proteomics. ORBs are RNA granules that are distinct from processing bodies and stress granules. Several lines of evidence support a role of ORBs in the compartmentalization of central steps in the translation quality control pathways No-Go mRNA decay and ribosome quality control. Active translation is required by both translation quality control and ORBs. ORBs contain two substrates of translation quality control: oxidized RNA and a stalled mRNA-ribosome-nascent chain complex. Translation quality control factors localize to ORBs. Translation quality control mutants have altered ORB number per cell, size, or both. Therefore, ORBs are an intracellular hub of translational quality control.

2015 ◽  
Vol 211 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Patrick Kuhn ◽  
Albena Draycheva ◽  
Andreas Vogt ◽  
Narcis-Adrian Petriman ◽  
Lukas Sturm ◽  
...  

Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mujie Ye ◽  
Jingjing Zhang ◽  
Meng Wei ◽  
Baihui Liu ◽  
Kuiran Dong

Abstract Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play various important roles in the development of cancers. The widespread applications of ribosome profiling and ribosome nascent chain complex sequencing revealed that some short open reading frames of lncRNAs have micropeptide-coding potential. The resulting micropeptides have been shown to participate in N6-methyladenosine modification, tumor angiogenesis, cancer metabolism, and signal transduction. This review summarizes current information regarding the reported roles of lncRNA-encoded micropeptides in cancer, and explores the potential clinical value of these micropeptides in the development of anti-cancer drugs and prognostic tumor biomarkers.


2021 ◽  
Vol 118 (51) ◽  
pp. e2026362118
Author(s):  
Ajeet K. Sharma ◽  
Johannes Venezian ◽  
Ayala Shiber ◽  
Günter Kramer ◽  
Bernd Bukau ◽  
...  

The presence of a single cluster of nonoptimal codons was found to decrease a transcript’s half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae. The impact of multiple nonoptimal codon clusters on a transcript’s half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5′ end can lead to synergistic effects that increase a messenger RNA’s (mRNA’s) half-life in S. cerevisiae. Specifically, the 5′ end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5′ end is the primary determinant of mRNA half-life. These results suggest the “translational ramp,” in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.


2007 ◽  
Vol 179 (3) ◽  
pp. 437-449 ◽  
Author(s):  
Carolyn J. Decker ◽  
Daniela Teixeira ◽  
Roy Parker

Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the “prionlike” domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA–protein complex that then aggregates through multiple specific mechanisms.


2016 ◽  
Vol 90 (10) ◽  
pp. 4860-4863 ◽  
Author(s):  
Jason M. Biegel ◽  
Cara T. Pager

During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.


2021 ◽  
Author(s):  
Raju Roy ◽  
Ishwarya Achappa Kuttanda ◽  
Nupur Bhatter ◽  
Purusharth I Rajyaguru

AbstractRNA granules are conserved mRNP complexes that play an important role in determining mRNA fate by affecting translation repression and mRNA decay. Processing bodies (P-bodies) harbor enzymes responsible for mRNA decay and proteins involved in modulating translation. Although many proteins have been identified to play a role in P-body assembly, a bonafide disassembly factor remains unknown. In this report, we identify RGG-motif translation repressor protein Sbp1 as a disassembly factor of P-bodies. Disassembly of Edc3 granules but not the Pab1 granules (a conserved stress granule marker) that arise upon sodium azide and glucose deprivation stress are defective in Δsbp1. Disassembly of other P-body proteins such as Dhh1 and Scd6 is also defective in Δsbp1. Complementation experiments suggest that the wild type Sbp1 but not an RGG-motif deletion mutant rescues the Edc3 granule disassembly defect in Δsbp1. We observe that purified Edc3 forms assemblies, which is promoted by the presence of RNA and NADH. Strikingly, addition of purified Sbp1 leads to significantly decreased Edc3 assemblies. Although low complexity sequences have been in general implicated in assembly, our results reveal the role of RGG-motif (a low-complexity sequence) in the disassembly of P-bodies.


2016 ◽  
Vol 27 (24) ◽  
pp. 3894-3902 ◽  
Author(s):  
Dipen Rajgor ◽  
Jonathan G. Hanley ◽  
Catherine M. Shanahan

Nesprins are highly conserved spectrin repeat–containing scaffold proteins predominantly known to function at the nuclear envelope (NE). However, nesprin isoforms are emerging with localizations and scaffolding functions at sites away from the NE, suggesting their functions are more diverse than originally thought. In this study, we combined nesprin-1 coimmunoprecipitations with mass spectrometry to identify novel nesprin-1 binding partners for isoforms that localize to subcellular compartments beyond the NE. We show that one of these interactors, matrin-3 (matr3), localizes to mRNA processing bodies (PBs), where we have previously shown a nesprin-1 isoform to localize. Furthermore, we show that Matr3 is part of PB mRNP complexes, is a regulator of miRNA-mediated gene silencing, and possibly shuttles to stress granules in stressed cells. More importantly, we identify a new C-terminally truncated Matr3 isoform that is likely to be involved in these functions and PB localization. This study highlights several novel nesprin-1 binding partners and a new function and localization for Matr3 in cytoplasmic RNA granules.


2006 ◽  
Vol 172 (6) ◽  
pp. 803-808 ◽  
Author(s):  
Paul Anderson ◽  
Nancy Kedersha

Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationship between different classes of these granules and discuss how spatial organization regulates messenger RNA translation/decay.


Sign in / Sign up

Export Citation Format

Share Document