scholarly journals RGG-motif protein Sbp1 is required for Processing body (P-body) disassembly

2021 ◽  
Author(s):  
Raju Roy ◽  
Ishwarya Achappa Kuttanda ◽  
Nupur Bhatter ◽  
Purusharth I Rajyaguru

AbstractRNA granules are conserved mRNP complexes that play an important role in determining mRNA fate by affecting translation repression and mRNA decay. Processing bodies (P-bodies) harbor enzymes responsible for mRNA decay and proteins involved in modulating translation. Although many proteins have been identified to play a role in P-body assembly, a bonafide disassembly factor remains unknown. In this report, we identify RGG-motif translation repressor protein Sbp1 as a disassembly factor of P-bodies. Disassembly of Edc3 granules but not the Pab1 granules (a conserved stress granule marker) that arise upon sodium azide and glucose deprivation stress are defective in Δsbp1. Disassembly of other P-body proteins such as Dhh1 and Scd6 is also defective in Δsbp1. Complementation experiments suggest that the wild type Sbp1 but not an RGG-motif deletion mutant rescues the Edc3 granule disassembly defect in Δsbp1. We observe that purified Edc3 forms assemblies, which is promoted by the presence of RNA and NADH. Strikingly, addition of purified Sbp1 leads to significantly decreased Edc3 assemblies. Although low complexity sequences have been in general implicated in assembly, our results reveal the role of RGG-motif (a low-complexity sequence) in the disassembly of P-bodies.

2007 ◽  
Vol 179 (3) ◽  
pp. 437-449 ◽  
Author(s):  
Carolyn J. Decker ◽  
Daniela Teixeira ◽  
Roy Parker

Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the “prionlike” domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA–protein complex that then aggregates through multiple specific mechanisms.


2016 ◽  
Vol 36 (17) ◽  
pp. 2226-2235 ◽  
Author(s):  
Marcos Arribas-Layton ◽  
Jaclyn Dennis ◽  
Eric J. Bennett ◽  
Christian K. Damgaard ◽  
Jens Lykke-Andersen

Processing bodies (PBs) are conserved cytoplasmic aggregations of translationally repressed mRNAs assembled with mRNA decay factors. The aggregation of mRNA-protein (mRNP) complexes into PBs involves interactions between low-complexity regions of protein components of the mRNPs. InSaccharomyces cerevisiae, the carboxy (C)-terminal Q/N-rich domain of the Lsm4 subunit of the Lsm1-7 complex plays an important role in PB formation, but the C-terminal domain of Lsm4 in most eukaryotes is an RGG domain rather than Q/N rich. Here we show that the Lsm4 RGG domain promotes PB accumulation in human cells and that symmetric dimethylation of arginines within the RGG domain stimulates this process. A mutant Lsm4 protein lacking the RGG domain failed to rescue PB formation in cells depleted of endogenous Lsm4, although this mutant protein retained the ability to assemble with Lsm1-7, associate with decapping factors, and promote mRNA decay and translational repression. Mutation of the symmetrically dimethylated arginines within the RGG domain impaired the ability of Lsm4 to promote PB accumulation. Depletion of PRMT5, the primary protein arginine methyltransferase responsible for symmetric arginine dimethylation, including Lsm4, resulted in loss of PBs. We also uncovered the histone acetyltransferase 1 (HAT1)-RBBP7 lysine acetylase complex as an interaction partner of the Lsm4 RGG domain but found no evidence of a role for this complex in PB metabolism. Together, our findings suggest a stimulatory role for posttranslational modifications in PB accumulation and raise the possibility that mRNP dynamics are posttranslationally regulated.


2010 ◽  
Vol 38 (1) ◽  
pp. 242-251 ◽  
Author(s):  
Meeta Kulkarni ◽  
Sevim Ozgur ◽  
Georg Stoecklin

P-bodies (processing bodies) are cytoplasmic foci visible by light microscopy in somatic cells of vertebrate and invertebrate origin as well as in yeast, plants and trypanosomes. At the molecular level, P-bodies are dynamic aggregates of specific mRNAs and proteins that serve a dual function: first, they harbour mRNAs that are translationally silenced, and such mRNA can exit again from P-bodies to re-engage in translation. Secondly, P-bodies recruit mRNAs that are targeted for deadenylation and degradation by the decapping/Xrn1 pathway. Whereas certain proteins are core constituents of P-bodies, others involved in recognizing short-lived mRNAs can only be trapped in P-bodies when mRNA decay is attenuated. This reflects the very transient interactions by which many proteins associate with P-bodies. In the present review, we summarize recent findings on the function, assembly and motility of P-bodies. An updated list of proteins and RNAs that localize to P-bodies will help in keeping track of this fast-growing field.


2014 ◽  
Vol 42 (4) ◽  
pp. 1206-1210 ◽  
Author(s):  
Dipen Rajgor ◽  
Catherine M. Shanahan

In eukaryotic cells, non-translating mRNAs can accumulate into cytoplasmic mRNP (messenger ribonucleoprotein) granules such as P-bodies (processing bodies) and SGs (stress granules). P-bodies contain the mRNA decay and translational repression machineries and are ubiquitously expressed in mammalian cells and lower eukaryote species including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. In contrast, SGs are only detected during cellular stress when translation is inhibited and form from aggregates of stalled pre-initiation complexes. SGs and P-bodies are related to NGs (neuronal granules), which are essential in the localization and control of mRNAs in neurons. Importantly, RNA granules are linked to the cytoskeleton, which plays an important role in mediating many of their dynamic properties. In the present review, we discuss how P-bodies, SGs and NGs are linked to cytoskeletal networks and the importance of these linkages in maintaining localization of their RNA cargoes.


2021 ◽  
Author(s):  
Jingwei Xie ◽  
Yu Chen ◽  
Xiaoyu Wei ◽  
Guennadi Kozlov

AbstractCompartmentalization of mRNA through formation of RNA granules is involved in many cellular processes, yet it is not well understood. mRNP complexes undergo dramatic changes in protein compositions, reflected by markers of P-bodies and stress granules. Here, we show that PABPC1, albeit absent in P-bodies, plays important role in P-body formation. Depletion of PABPC1 decreases P-body population in unstressed cells. Upon stress in PABPC1 depleted cells, individual P-bodies fail to form and instead P-body proteins assemble on PABPC1-containing stress granules. We hypothesize that mRNP recruit proteins via PABPC1 to assemble P-bodies, before PABPC1 is displaced from mRNP. Further, we demonstrate that GW182 can mediate P-body assembly. These findings help us understand the early stages of mRNP remodeling and P-body formation.Summary statementA novel role of poly(A) binding protein is reported in P-body formation


2019 ◽  
Vol 47 (17) ◽  
pp. 9368-9385 ◽  
Author(s):  
Nishi R Sharma ◽  
Vladimir Majerciak ◽  
Michael J Kruhlak ◽  
Lulu Yu ◽  
Jeong Gu Kang ◽  
...  

Abstract Cellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57. The wild-type ORF57, but not its N-terminal dysfunctional mutant, inhibits PB formation by interacting with the N-terminal GW-domain of GW182 and the N-terminal domain of Ago2, two major components of PB. KSHV ORF57 also induces nuclear Ago2 speckles. Homologous HSV-1 ICP27, but not EBV EB2, shares this conserved inhibitory function with KSHV ORF57. By using time-lapse confocal microscopy of HeLa cells co-expressing GFP-tagged GW182, we demonstrated that viral ORF57 inhibits primarily the scaffolding of GW182 at the initial stage of PB formation. Consistently, KSHV-infected iSLK/Bac16 cells with reduced GW182 expression produced far fewer PB and SG, but 100-fold higher titer of infectious KSHV virions when compared to cells with normal GW182 expression. Altogether, our data provide the first evidence that a DNA virus evades host innate immunity by encoding an RNA-binding protein that promotes its replication by blocking PB formation.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Narayani Nagarajan ◽  
Shinichi Oka ◽  
Gihoon NAH ◽  
Peiyong Zhai ◽  
Wataru Mizushima ◽  
...  

Thioredoxin 1 (Trx1) is an oxidoreductase that reduces proteins with disulfide bonds. Trx1 also functions as a transnitrosylase, but this occurs only when Trx1 is oxidized at Cys32 and Cys35. In cultured cardiomyocytes (CMs), glucose deprivation (GD) induces oxidation of Trx1 and Trx1 is transnitrosylated. Thus, we hypothesized that Trx1 promotes GD-induced autophagy through its function as a transnitrosylase rather than as an oxidoreductase. GD-induced autophagy, evaluated by counting GFP-LC3 puncta, was inhibited in the presence of the transnitrosylation-defective Trx1C73S mutant (GFP-LC3 puncta per cell under GD; control: 38; Trx1 knockdown: 2*; Trx1C73S: 17*; p<0.05 vs. control), suggesting that Cys73 in Trx1 plays an important role in mediating GD-induced autophagy. Mass spectrometric analyses and biochemical assays showed that Atg7, an essential autophagy regulator, is a Trx1 target and that Trx1 binds to Atg7 via Cys454 and Cys458 in Atg7, thereby transnitrosylating Atg7 at Cys294 and Cys402. Trx1C73S knock-in (Trx1C73S-KI) promoted coronary ligation (CL)-induced myocardial infarction (MI) (MI size/area at risk (AAR) (%); Wild type (WT): 21; Trx1C73S-KI: 42*; p<0.05 vs. WT), in association with reduced S-nitrosylation of Atg7. To test the role of S-nitrosylation of Atg7 in mediating autophagy, we transduced an S-nitrosylation defective Atg7 mutant (Atg7CC294/402SS) into adult cardiomyocytes isolated from cardiac-specific Atg7 knockout mice. Compared to intact Atg7, Atg7CC294/402SS was less able to induce autophagy, as evidenced by reduced LC-3II formation (relative LC3-II; intact Atg7: 1.0; Atg7CC294/402SS: 0.81*; p<0.05). Atg7C402S, but not Atg7C294S, knock-in exacerbated CL-induced MI (MI size/AAR (%); WT: 32; Atg7C402-KI: 42*; p<0.05 vs. WT). These results suggest that Trx1 protects the heart against MI by mediating autophagy via S-nitrosylation of Atg7 at Cys402.


2008 ◽  
Vol 183 (3) ◽  
pp. 441-455 ◽  
Author(s):  
J. Ross Buchan ◽  
Denise Muhlrad ◽  
Roy Parker

Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies.


2012 ◽  
Vol 446 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Aya Iwaki ◽  
Shingo Izawa

The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules compared with other forms of stress such as glucose deprivation and a high Ca2+ level in Saccharomyces cerevisiae. Treatment with lactic acid clearly caused the formation of P-bodies, but not SGs, and also caused an attenuation of translation initiation, albeit to a lesser extent than glucose depletion. P-body formation was also induced by hydrochloric acid and sulfuric acid. However, lactic acid in SD (synthetic dextrose) medium with a pH greater than 3.0, propionic acid and acetic acid did not induce P-body formation. The results of the present study suggest that the assembly of yeast P-bodies can be induced by external conditions with a low pH and the threshold was around pH 2.5. The P-body formation upon acidic stress required Scd6 (suppressor of clathrin deficiency 6), a component of P-bodies, indicating that P-bodies induced by acidic stress have rules of assembly different from those induced by glucose deprivation or high Ca2+ levels.


2020 ◽  
Author(s):  
Kiril Tishinov ◽  
Anne Spang

AbstractmRNA decay is a key step in regulating the cellular proteome. Cytoplasmic mRNA is largely turned over in processing bodies (P-bodies). P-body units assemble to form P-body granules under stress conditions. How this assembly is regulated, however, remains still poorly understood. Here, we show that the translational repressor Scd6 and the decapping stimulator Edc3 act partially redundantly in P-body assembly by capturing the Dcp1/2 decapping complex and preventing it from becoming imported into the nucleus by the karyopherin ß Kap95. Nuclear Dcp1/2 does not drive mRNA decay and might be stored there as a ready releasable pool, indicating a dynamic equilibrium between cytoplasmic and nuclear Dcp1/2. Cytoplasmic Dcp1/2 is linked to Dhh1 via Edc3 and Scd6. Functional P-bodies are present at the endoplasmic reticulum where Dcp2 potentially acts to increase the local concentration of Dhh1 through interaction with Scd6 and Edc3 to drive phase separation and hence P-body formation.


Sign in / Sign up

Export Citation Format

Share Document