scholarly journals Computational Hot-Spot Analysis of the SARS-CoV-2 Receptor Binding Domain / ACE2 Complex

2020 ◽  
Author(s):  
Pedro A. Rosario ◽  
Brian R. McNaughton

AbstractInfection and replication of SARS CoV-2 (the virus that causes COVID-19) requires entry to the interior of host cells. In humans, a Protein-Protein Interaction (PPI) between the SARS CoV-2 Receptor-Binding Domain (RBD) and the extracellular peptidase domain of ACE2, on the surface of cells in the lower respiratory tract, is an initial step in the entry pathway. Inhibition of the SARS CoV-2 RBD / ACE2 PPI is currently being evaluated as a target for therapeutic and/or prophylactic intervention. However, relatively little is known about the molecular underpinnings of this complex. Employing multiple computational platforms, we predicted ‘hot-spot’ residues in a positive control PPI (PMI / MDM2) and the CoV-2 RBD/ACE2 complex. Computational alanine scanning mutagenesis was performed to predict changes in Gibbs’ free energy that are associated with mutating residues at the positive control (PMI/MDM2) or SARS RBD/ACE2 binding interface to alanine. Additionally, we used the Adaptive Poisson-Boltzmann Solver to calculate macromolecular electrostatic surfaces at the interface of the positive control PPI and SARS CoV-2 / ACE2 PPI. Collectively, this study illuminates predicted hot-spot residues, and clusters, at the SARS CoV-2 RBD / ACE2 binding interface, potentially guiding the development of reagents capable of disrupting this complex and halting COVID-19.

Author(s):  
Vinicio Armijos-Jaramillo ◽  
Justin Yeager ◽  
Claire Muslin ◽  
Yunierkis Perez-Castillo

AbstractThe emergence of SARS-CoV-2 has resulted in more than 200,000 infections and nearly 9,000 deaths globally so far. This novel virus is thought to have originated from an animal reservoir, and acquired the ability to infect human cells using the SARS-CoV cell receptor hACE2. In the wake of a global pandemic it is essential to improve our understanding of the evolutionary dynamics surrounding the origin and spread of a novel infectious disease. One way theory predicts selection pressures should shape viral evolution is to enhance binding with host cells. We first assessed evolutionary dynamics in select betacoronavirus spike protein genes to predict where these genomic regions are under directional or purifying selection between divergent viral lineages at various scales of relatedness. With this analysis, we determine a region inside the receptor-binding domain with putative sites under positive selection interspersed among highly conserved sites, which are implicated in structural stability of the viral spike protein and its union with human receptor hACE2. Next, to gain further insights into factors associated with coronaviruses recognition of the human host receptor, we performed modeling studies of five different coronaviruses and their potential binding to hACE2. Modeling results indicate that interfering with the salt bridges at hot spot 353 could be an effective strategy for inhibiting binding, and hence for the prevention of coronavirus infections. We also propose that a glycine residue at the receptor binding domain of the spike glycoprotein can have a critical role in permitting bat variants of the coronaviruses to infect human cells.


Author(s):  
Acharya Balkrishna ◽  
SUBARNA POKHREL ◽  
Jagdeep Singh ◽  
Anurag Varshney

Abstract Background Newly emerged COVID-19 has been shown to engage the host cell ACE2 through its spike protein receptor binding domain (RBD). Here we show that natural phytochemical from a medicinal herb, Withania somnifera, have distinct effects on viral RBD and host ACE2 receptor complex. Methods We employed molecular docking to screen thousands of phytochemicals against the ACE2-RBD complex, performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding free energy, along with the computation of salt bridge electrostatics. Results We report that W. somnifera compound, Withanone, docked very well in the binding interface of AEC2-RBD complex, and was found to move slightly towards the interface centre on simulation. Withanone significantly decreased electrostatic component of binding free energies of ACE2-RBD complex. Two salt bridges were also identified at the interface; incorporation of Withanone destabilized these salt bridges and decreased their occupancies. We postulate, such an interruption of electrostatic interactions between the RBD and ACE2 would block or weaken COVID-19 entry and its subsequent infectivity. Conclusion Our data, for the first time, show that natural phytochemicals could well be the viable options for controlling COVID-19 entry into host cells, and W. somnifera may be the first choice of herbs in these directions to curb the COVID-19 infectivity.


2021 ◽  
Vol 7 (7) ◽  
pp. 553
Author(s):  
Bin Gao ◽  
Shunyi Zhu

Coronavirus Disease 2019 (COVID−19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS−CoV−2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor−binding domain (RBD) of the viral Spike protein and the membrane−bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor−binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen−bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C−terminal γ−core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six−fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID−19.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1983
Author(s):  
Irani Alves Ferreira-Bravo ◽  
Jeffrey J. DeStefano

The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.


2021 ◽  
Author(s):  
Young-Il Kim ◽  
Dokyun Kim ◽  
Kwang-Min Yu ◽  
Hogyu David Seo ◽  
Shin-Ae Lee ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori-bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.


2021 ◽  
Author(s):  
Vincenzo Tragni ◽  
Francesca Preziusi ◽  
Luna Laera ◽  
Angelo Onofrio ◽  
Simona Todisco ◽  
...  

The rapid spread of new SARS-CoV-2 variants needs the development of rapid tools for predicting the affinity of the mutated proteins responsible for the infection, i.e., the SARS-CoV-2 spike protein, for the human ACE2 receptor, aiming to understand if a variant can be more efficient in invading host cells. Here we show how our computational pipeline, previously used for studying SARS-CoV-2 spike receptor-binding domain (RBD)/ACE2 interactions and pre-/post-fusion conformational changes, can be used for predicting binding affinities of the human ACE2 receptor for the spike protein RBD of the characterized infectious variants of concern/interest B.1.1.7-UK (carrying the mutations N501Y, S494P, E484K at the RBD), P.1-Japan/Brazil (RBD mutations: K417N/T, E484K, N501Y), B.1.351-South Africa (RBD mutations: K417N, E484K, N501Y), B.1.427/B.1.429-California (RBD mutations: L452R), the B.1.141 variant (RBD mutations: N439K), and the recent B.1.617.1-India (RBD mutations: L452R; E484Q) and the B.1.620 (RBD mutations: S477N; E484K). Furthermore, we searched for ACE2 structurally related proteins that might be involved in interactions with the SARS-CoV-2 spike protein, in those tissues showing low ACE2 expression, revealing two new proteins, THOP1 and NLN, deserving to be investigated for their possible inclusion in the group of host-cell entry factors responsible for host-cell SARS-CoV-2 invasion and immunity response.


Author(s):  
Acharya Balkrishna ◽  
Subarna Pokhrel ◽  
Anurag Varshney

Background: SARS-CoV-2 has been shown to bind the host cell ACE2 receptor through its spike protein receptor binding domain (RBD), required for its entry into the host cells. Objective: We have screened phytocompounds from a medicinal herb, Tinospora cordifolia, for their capacities to interrupt the viral RBD and host ACE2 interactions. Method: We employed molecular docking to screen phytocompounds in T. cordifolia against the ACE2-RBD complex, performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding free energy. Results: ‘Tinocordiside’ docked very well at the center of the interface of ACE2-RBD complex, and was found to be well stabilized during MD simulation. Tinocordiside incorporation significantly decreased electrostatic component of binding free energies of ACE2-RBD complex (23.5 and 17.10 kcal/mol in the trajectories without or with the ligand, respectively). As the basal rate constant of protein association is in the order of 5, (105 to 106 M-1 S-1 ), there might be no big conformational change or loop reorganization, but involves only local conformational change typically observed in diffusion-controlled association. Taken together, the increase in global flexibility of the complex, clearly indicates the start of unbinding process of the complex. Conclusion: It indicates that such an interruption of electrostatic interactions between the RBD and ACE2, and the increase in global flexibility of the complex, would weaken or block SARS-CoV-2 entry and its subsequent infectivity. We postulate that natural phytochemicals like Tinocordiside could be the viable options for controlling SARS-CoV-2 contagion and its entry into host cells.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1203
Author(s):  
Kenneth Lundstrom ◽  
Murat Seyran ◽  
Damiano Pizzol ◽  
Parise Adadi ◽  
Tarek Mohamed Abd El-Aziz ◽  
...  

The origin of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virus causing the COVID-19 pandemic has not yet been fully determined. Despite the consensus about the SARS-CoV-2 origin from bat CoV RaTG13, discrepancy to host tropism to other human Coronaviruses exist. SARS-CoV-2 also possesses some differences in its S protein receptor-binding domain, glycan-binding N-terminal domain and the surface of the sialic acid-binding domain. Despite similarities based on cryo-EM and biochemical studies, the SARS-CoV-2 shows higher stability and binding affinity to the ACE2 receptor. The SARS-CoV-2 does not appear to present a mutational “hot spot” as only the D614G mutation has been identified from clinical isolates. As laboratory manipulation is highly unlikely for the origin of SARS-CoV-2, the current possibilities comprise either natural selection in animal host before zoonotic transfer or natural selection in humans following zoonotic transfer. In the former case, despite SARS-CoV-2 and bat RaTG13 showing 96% identity some pangolin Coronaviruses exhibit very high similarity to particularly the receptor-binding domain of SARS-CoV-2. In the latter case, it can be hypothesized that the SARS-CoV-2 genome has adapted during human-to-human transmission and based on available data, the isolated SARS-CoV-2 genomes derive from a common origin. Before the origin of SARS-CoV-2 can be confirmed additional research is required


Sign in / Sign up

Export Citation Format

Share Document