scholarly journals Mimicry is associated with procedural learning, not social bonding, neural systems in autism

2020 ◽  
Author(s):  
Bahar Tunçgenç ◽  
Carolyn Koch ◽  
Amira Herstic ◽  
Inge-Marie Eigsti ◽  
Stewart Mostofsky

AbstractMimicry facilitates social bonding throughout the lifespan. Mimicry impairments in autism spectrum conditions (ASC) are widely reported, including differentiation of the brain networks associated with its social bonding and learning functions. This study examined associations between volumes of brain regions associated with social bonding versus procedural skill learning, and mimicry of gestures during a naturalistic interaction in ASC and neurotypical (NT) children. Consistent with predictions, results revealed reduced mimicry in ASC relative to the NT children. Mimicry frequency was negatively associated with autism symptom severity. Mimicry was predicted predominantly by the volume of procedural skill learning regions in ASC, and by bonding regions in NT. Further, bonding regions contributed significantly less to mimicry in ASC than in NT, while the contribution of learning regions was not different across groups. These findings suggest that associating mimicry with skill learning, rather than social bonding, may partially explain observed communication difficulties in ASC.

2002 ◽  
Vol 88 (3) ◽  
pp. 1451-1460 ◽  
Author(s):  
Daniel B. Willingham ◽  
Joanna Salidis ◽  
John D.E. Gabrieli

Procedural learning, such as perceptual-motor sequence learning, has been suggested to be an obligatory consequence of practiced performance and to reflect adaptive plasticity in the neural systems mediating performance. Prior neuroimaging studies, however, have found that sequence learning accompanied with awareness (declarative learning) of the sequence activates entirely different brain regions than learning without awareness of the sequence (procedural learning). Functional neuroimaging was used to assess whether declarative sequence learning prevents procedural learning in the brain. Awareness of the sequence was controlled by changing the color of the stimuli to match or differ from the color used for random sequences. This allowed direct comparison of brain activation associated with procedural and declarative memory for an identical sequence. Activation occurred in a common neural network whether initial learning had occurred with or without awareness of the sequence, and whether subjects were aware or not aware of the sequence during performance. There was widespread additional activation associated with awareness of the sequence. This supports the view that some types of unconscious procedural learning occurs in the brain whether or not it is accompanied by conscious declarative knowledge.


2021 ◽  
Author(s):  
Pavithra Elumalai ◽  
Yasharth Yadav ◽  
Nitin Williams ◽  
Emil Saucan ◽  
Jürgen Jost ◽  
...  

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders that pose a significant global health burden. Measures from graph theory have been used to characterise ASD-related changes in resting-state fMRI functional connectivity networks (FCNs), but recently developed geometry-inspired measures have not been applied so far. In this study, we applied geometry-inspired graph Ricci curvatures to investigate ASD-related changes in resting-state fMRI FCNs. To do this, we applied Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and healthy controls (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We performed these comparisons at the brain-wide level as well as at the level of individual brain regions, and further, determined the behavioral relevance of region-specific differences with Neurosynth meta-analysis decoding. We found brain-wide ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures. For Forman-Ricci curvature, these differences were distributed across 83 of the 200 brain regions studied, and concentrated within the Default Mode, Somatomotor and Ventral Attention Network. Meta-analysis decoding identified the brain regions showing curvature differences as involved in social cognition, memory, language and movement. Notably, comparison with results from previous non-invasive stimulation (TMS/tDCS) experiments revealed that the set of brain regions showing curvature differences overlapped with the set of brain regions whose stimulation resulted in positive cognitive or behavioural outcomes in ASD patients. These results underscore the utility of geometry-inspired graph Ricci curvatures in characterising disease-related changes in ASD, and possibly, other neurodevelopmental disorders.


2020 ◽  
Author(s):  
Thomas L. Botch ◽  
Alina Spiegel ◽  
Catherine Ricciardi ◽  
Caroline E. Robertson

AbstractBumetanide has received much interest as a potential pharmacological modulator of the putative imbalance in excitatory/inhibitory (E/I) signaling that is thought to characterize autism spectrum conditions. Yet, currently, no studies of bumetanide efficacy have used an outcome measure that is modeled to depend on E/I balance in the brain. In this manuscript, we present the first causal study of the effect of bumetanide on an objective marker of E/I balance in the brain, binocular rivalry, which we have previously shown to be sensitive to pharmacological manipulation of GABA. Using a within-subjects placebo-control crossover design study, we show that, contrary to expectation, acute administration of bumetanide does not alter binocular rivalry dynamics in neurotypical adult individuals. Neither changes in response times nor response criteria can account for these results. These results raise important questions about the efficacy of acute bumetanide administration for altering E/I balance in the human brain, and highlight the importance of studies using objective markers of the underlying neural processes that drugs hope to target.


Author(s):  
Yael Dai ◽  
Inge-Marie Eigsti

This chapter reviews strengths and weaknesses in executive function (EF) domains, including inhibition, working memory, flexibility, fluency, and planning, in adolescents (age 13–19) with autism spectrum disorder (ASD). Given the dramatic developmental changes in the brain regions that support EF during the period of adolescence, it is critical to evaluate which EF abilities show a distinct profile during this period. As this chapter will demonstrate, youth with ASD show deficits across all domains of EF, particularly in complex tasks that include arbitrary instructions. We describe the fundamental measures for assessing skills in each domain and discuss limitations and future directions for research, as well as clinical implications of these findings for working with youth with ASD.


2021 ◽  
Vol 11 (12) ◽  
pp. 1619
Author(s):  
Shinya Watanuki

Brand equity is an important intangible for enterprises. As one advantage, products with brand equity can increase revenue, compared with those without such equity. However, unlike tangibles, it is difficult for enterprises to manage brand equity because it exists within consumers’ minds. Although, over the past two decades, numerous consumer neuroscience studies have revealed the brain regions related to brand equity, the identification of unique brain regions related to such equity is still controversial. Therefore, this study identifies the unique brain regions related to brand equity and assesses the mental processes derived from these regions. For this purpose, three analysis methods (i.e., the quantitative meta-analysis, chi-square tests, and machine learning) were conducted. The data were collected in accordance with the general procedures of a qualitative meta-analysis. In total, 65 studies (1412 foci) investigating branded objects with brand equity and unbranded objects without brand equity were examined, whereas the neural systems involved for these two brain regions were contrasted. According to the results, the parahippocampal gyrus and the lingual gyrus were unique brand equity-related brain regions, whereas automatic mental processes based on emotional associative memories derived from these regions were characteristic mental processes that discriminate branded from unbranded objects.


2019 ◽  
Author(s):  
Michal Ramot ◽  
Catherine Walsh ◽  
Gabrielle E. Reimann ◽  
Alex Martin

AbstractExtensive study of typically developing individuals and those on the autism spectrum has identified a large number of brain regions associated with our ability to navigate the social world. Although it is widely appreciated that this so-called ‘social brain’ is composed of distinct, interacting systems, these component parts have yet to be clearly elucidated. Here we used measures of eye movement and neural typicality – based on the degree to which subjects deviated from the norm – while typically developing (N = 62) and individuals with autism (N = 36) watched a large battery of movies depicting social interactions. Our findings provide clear evidence for distinct, but overlapping, neural systems underpinning two major components of the ‘social brain’, social orienting and inferring the mental state of others.


Science ◽  
2019 ◽  
Vol 363 (6424) ◽  
pp. eaav0581 ◽  
Author(s):  
Ilaria Carta ◽  
Christopher H. Chen ◽  
Amanda L. Schott ◽  
Schnaude Dorizan ◽  
Kamran Khodakhah

The cerebellum has been implicated in a number of nonmotor mental disorders such as autism spectrum disorder, schizophrenia, and addiction. However, its contribution to these disorders is not well understood. In mice, we found that the cerebellum sends direct excitatory projections to the ventral tegmental area (VTA), one of the brain regions that processes and encodes reward. Optogenetic activation of the cerebello-VTA projections was rewarding and, in a three-chamber social task, these projections were more active when the animal explored the social chamber. Intriguingly, activity in the cerebello-VTA pathway was required for the mice to show social preference in this task. Our data delineate a major, previously unappreciated role for the cerebellum in controlling the reward circuitry and social behavior.


2020 ◽  
Author(s):  
Carla Esther Meyer Golden ◽  
Victoria X Wang ◽  
Hala Harony-Nicolas ◽  
Patrick R. Hof ◽  
Joseph Buxbaum

Abstract Background: Mutations and deletions in the SHANK3 synaptic gene cause the major neurodevelopmental features of Phelan-McDermid syndrome (PMS). The SHANK3 gene encodes a key structural component of excitatory synapses that is important for synaptogenesis. PMS is characterized by intellectual disability, autism spectrum disorder, cognitive deficits, physical dysmorphic features, sensory hyporeactivity, and alterations in the size of multiple brain regions. Clinical assessments and limited imaging studies have revealed a reduction in volume of multiple brain regions. They have also found white matter thinning and microstructural alterations to be persistent in patients with PMS. While many of these impairments have been replicated in mouse models of PMS, the brain structure of a rat model has not yet been studied. Methods: We assessed the brain structure of haploinsufficient and homozygous Shank3-deficient rats that model the behavioral deficits of PMS with magnetic resonance and diffusion tensor imaging, and compared their brain structure to wild type littermates.Results: Both gray and white matter structures were smaller in Shank3-deficient rats, leading to an overall reduction in brain size compared to wild type littermates. The largest region to be diminished in size was the neocortex. Some regions involved in sensory processing and white matter regions were also reduced in size. Lastly, the microstructure of two white matter tracts, the external capsule and fornix, was abnormal.Conclusions: Shank3-deficient rats replicate the reduced brain volume and altered white matter phenotypes present in individuals with PMS. Therefore, the brain regions that were altered represent potential cross-species structural biomarkers that warrant further study.


Author(s):  
Farnaz Faridi ◽  
◽  
Afrooz Seyedebrahimi ◽  
Reza Khosrowabadi ◽  
◽  
...  

Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD). In this study, we compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age= 14-50, IQ= 92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144). Results of one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is decreased in ASD. This attenuated structural differentiation could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.


2021 ◽  
Author(s):  
Akhil A. Vinithakumari ◽  
Piyush Padhi ◽  
Belen G. Hernandez ◽  
Susanne Je-Han Lin ◽  
Aaron Dunkerson-Kurzhumov ◽  
...  

Gastrointestinal illnesses are one of the most common comorbidities reported in patients with neurodevelopmental diseases, including autism spectrum disorders (ASD). Gut dysbiosis, overgrowth of C. difficile in the gut, and gut microbiota-associated alterations in central neurotransmission have been implicated in ASD, where the dopaminergic axis plays an important role in the disease pathogenesis. Human C. difficile strains produce a significant amount of the toxic metabolite p-cresol, an inhibitor of dopamine beta-hydroxylase (DBH), which catalyzes the conversion of dopamine (DA) to norepinephrine (NE). p-cresol is known to precipitate and exacerbate autistic behavior in rodents by increasing DA levels and altering DA receptor sensitivity in brain regions relevant to ASD. Therefore, we hypothesized that C. difficile infection dysregulates dopaminergic metabolism in the brain by increasing p-cresol levels in the gut and circulation and by inhibiting DBH, ultimately leading to elevated DA in the brain. For testing this hypothesis, we induced antibiotic-associated C. difficile in mice and determined the gut and serum p-cresol levels, serum DBH activity, and dopamine and its metabolite levels in different brain regions relevant to ASD. The results showed that C. difficile infection causes significant alterations in the dopaminergic axis in mice (p < 0.05). In addition, significantly increased circulating p-cresol levels and reduced DBH activity was observed in C. difficile infected animals (p < 0.05). Therefore, the results from this study suggest a potential link between C. difficile infection and alterations in the dopaminergic axis implicated in the precipitation and aggravation of ASD.


Sign in / Sign up

Export Citation Format

Share Document