scholarly journals Population structure, biogeography and transmissibility of Mycobacterium tuberculosis

2020 ◽  
Author(s):  
Luca Freschi ◽  
Roger Vargas ◽  
Ashek Hussain ◽  
S M Mostofa Kamal ◽  
Alena Skrahina ◽  
...  

AbstractMycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing the first in-depth analysis of the ancient East African Indian Lineage 1 and the modern Central Asian Lineage 3 and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4,939 pan-susceptible strains and find 30 new genetically distinct clades that we validate in a dataset of 4,645 independent isolates. We characterize sub-lineage geographic distributions and demonstrate a consistent geographically restricted and unrestricted pattern for 20 groups, including three groups of Lineage 1. We assess the transmissibility of the four major lineages by examining the distribution of terminal branch lengths across the M. tuberculosis phylogeny and identify evidence supporting higher transmissibility in Lineages 2 and 4 than 3 and 1 on a global scale. We define a robust expanded barcode of 95 single nucleotide substitutions (SNS) that allows for the rapid identification of 69 Mtb sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the Mtb phylogeny and biogeography.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca Freschi ◽  
Roger Vargas ◽  
Ashaque Husain ◽  
S. M. Mostofa Kamal ◽  
Alena Skrahina ◽  
...  

AbstractMycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing an in-depth analysis of the ancient Indo-Oceanic Lineage 1 and the modern Central Asian Lineage 3, and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4939 pan-susceptible strains, and find 30 new genetically distinct clades that we validate in a dataset of 4645 independent isolates. We find a consistent geographically restricted or unrestricted pattern for 20 groups, including three groups of Lineage 1. The distribution of terminal branch lengths across the M. tuberculosis phylogeny supports the hypothesis of a higher transmissibility of Lineages 2 and 4, in comparison with Lineages 3 and 1, on a global scale. We define an expanded barcode of 95 single nucleotide substitutions that allows rapid identification of 69 M. tuberculosis sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the M. tuberculosis phylogeny and biogeography.


2011 ◽  
Vol 55 (12) ◽  
pp. 5654-5659 ◽  
Author(s):  
Asho Ali ◽  
Rumina Hasan ◽  
Kauser Jabeen ◽  
Nusrat Jabeen ◽  
Ejaz Qadeer ◽  
...  

ABSTRACTThe increasing incidence of extensively drug-resistant (XDR)Mycobacterium tuberculosisin high-tuberculosis-burden countries further highlights the need for improved rapid diagnostic assays. An increasing incidence of XDRM. tuberculosisstrains in Pakistan has been reported, but drug resistance-associated mutations in these strains have not been evaluated previously. We sequenced the “hot-spot” regions ofrpoB,katG,inhA,ahpC,gyrA,gyrB, andrrsgenes in 50 XDRM. tuberculosisstrains. It was observed that 2% of rifampin, 6% of isoniazid, 24% of fluoroquinolone, and 32% of aminoglycoside/capreomycin resistance in XDRM. tuberculosisstrains would be undetected if only these common hot-spot regions were tested. The frequencies of resistance-conferring mutations were found to be comparable among all XDRM. tuberculosisstrain families present, including the Central Asian Strain, Beijing, and East African Indian genogroups and the Unique isolates. Additional genetic loci need to be tested for detection of mutations conferring fluoroquinolone, aminoglycoside, and capreomycin resistance in order to improve molecular diagnosis of regional XDRM. tuberculosisstrains.


2017 ◽  
Vol 22 (9) ◽  
pp. 1142-1149 ◽  
Author(s):  
Gavish Kumar ◽  
Hari Shankar ◽  
Divakar Sharma ◽  
Prashant Sharma ◽  
Deepa Bisht ◽  
...  

Although diverse efforts have been done to identify biomarkers for control of tuberculosis using laboratory strain Mycobacterium tuberculosis H37Rv, the disease still poses a threat to mankind. There are many emerging M. tuberculosis strains, and proteomic profiling of these strains might be important to find out potential targets for diagnosis and/or prevention of tuberculosis. We evaluated the comparative proteomic profiling of culture filtrate (CF) proteins from prevalent M. tuberculosis strains (Central Asian or Delhi type; CAS1_Del, East African-Indian; EAI-3 and Beijing family) by 2D polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization–time-of-flight mass spectrometry. As a result, we could identify 12 CF proteins (Rv0066c, Rv1310, Rv3375, Rv1415, Rv0567, Rv1886c, Rv3803c, Rv3804c, Rv2031c, Rv1038c, Rv2809, and Rv1911c), which were consistently increased in all prevalent M. tuberculosis strains, and interestingly, two CF proteins (Rv2809, Rv1911c) were identified with unknown functions. Consistent increased intensity of these proteins suggests their critical role for survival of prevalent M. tuberculosis isolates, and some of these proteins may also have potential as diagnostic and vaccine candidates for tuberculosis, which needs to be further explored by immunological analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Tizzano ◽  
Tobias K. Dallenga ◽  
Christian Utpatel ◽  
Jochen Behrends ◽  
Susanne Homolka ◽  
...  

AbstractWhile persistence in a dormant state is crucial for the life cycle of Mycobacterium tuberculosis, no investigation regarding dormancy survival of different strains across different lineages was performed so far. We analyzed responses to oxygen starvation and recovery in terms of growth, metabolism, and transcription. All different strains belonging to the Euro-American lineage (L4) showed similar survival and resuscitation characteristics. Different clinical isolates from the Beijing (L2), East African-Indian (L3), and Delhi/Central Asian (L1) lineage did not survive oxygen starvation. We show that dormancy survival is lineage-dependent. Recovery from O2 starvation was only observed in strains belonging to the Euro-American (L4) lineage but not in strains belonging to different lineages (L1, L2, L3). Thus, resuscitation from dormancy after oxygen starvation is not a general feature of all M. tuberculosis strains as thought before. Our findings are of key importance to understand infection dynamics of non-Euro-American vs Euro-American strains and to develop drugs targeting the dormant state.


2019 ◽  
Vol 13 (07) ◽  
pp. 619-625
Author(s):  
Muhammad Shafee ◽  
Ferhat Abbas ◽  
Zunera Tanveer ◽  
Andrew Whitelaw ◽  
Lemese Ah Tow ◽  
...  

Introduction: Tuberculosis is a chronic debilitating infectious disease causing a severe challenge to public health, especially in developing countries. The aim of this study was to examine genetic diversity in Mycobacterium tuberculosis strains circulating in the Balochistan region of Pakistan. Methodology: One hundred isolates collected from patients visiting the Fatima Jinnah TB Hospital in Quetta were subjected to genotype analysis by spoligotyping. Results: Three main genotypes were identified: Central Asian Strain 1 (CAS1) (n = 89), East African Indian (EAI) strain (n = 7) and Latin American Mediterranean (LAM) strain (n = 3). The CAS1 clade (ST 26) had high genetic diversity represented by seven different spoligopatterns, of which one had major predominace (n = 75). Conclusions: This is the first insight into the genotype of M. tuberculosis strains in the Balochistan region that might serve as a base line study for control of tuberculosis in the community.


2020 ◽  
Vol 14 (08) ◽  
pp. 878-885
Author(s):  
Khaldoun Masoud ◽  
George F Araj ◽  
Lina Reslan ◽  
Sukayna Fadlallah ◽  
Michel Wehbe ◽  
...  

Introduction: Data about the genotypes of circulating Mycobacterium tuberculosis isolates (MTB) in Lebanon are scarce. This study was undertaken to reveal the spoligotypes of MTB isolates recovered from patients in Lebanon. Methodology: MTB isolates from 49 patients living in Lebanon were recovered and identified. The samples were heat killed and subjected to DNA extraction. Spoligotyping was performed using microbeads from TB-SPOL Kit and the fluorescence intensity was measured using Luminex 200®. Generated patterns were assigned to families using the SITVIT2 international database of the Pasteur Institute of Guadeloupe and compared. Results: The spoligotyping of the 49 MTB isolates revealed that 31 isolates belonged to Lineage 4 (Euro-American, 63.3%), 12 to Lineage 3 (East- African Indian, 24.5%), 3 to Lineage 2 (East Asian, 6%) and 2 were unknown. Over half of the genotypes (16 of 30) harbored SIT127 supposed to belong to the L4.5 sublineage. One isolate belonging to the rare Manu-Ancestor SIT523 was recovered for the first time in Lebanon, being associated with highly virulent extensively drug-resistant (XDR) MTB phenotype. Conclusion: The application of the Spoligotyping Multiplex Luminex® method is an efficient, discriminatory and rapid method to use for first-lane genotyping of MTB isolates. Though humble numbers were tested, this study is one of the first to describe the genomic diversity and epidemiology of MTB isolates of Lebanon, and suggests an increasing prevalence of SIT127 in the country.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


Sign in / Sign up

Export Citation Format

Share Document