scholarly journals Precision as a metric for acoustic survey design using occupancy or spatial capture-recapture

2020 ◽  
Author(s):  
Julius Juodakis ◽  
Isabel Castro ◽  
Stephen Marsland

AbstractPassive acoustic surveys provide a convenient and cost-effective way to monitor animal populations. Methods for conducting and analysing such surveys, especially for performing automated call recognition from sound recordings, are undergoing rapid development. However, no standard metric exists to evaluate the proposed changes. Furthermore, most metrics that are currently used are specific to a single stage of the survey workflow, and therefore may not reflect the overall effects of a design choice.Here, we attempt to define and evaluate the effectiveness of surveys conducted in two common frameworks of population inference – occupancy modelling and spatially explicit capture-recapture (SCR). Specifically, we investigate precision (standard error of the final estimate) as a possible metric of survey performance, but we show that it does not lead to generally optimal designs in occupancy modelling. In contrast, precision of the SCR density estimate can be optimised with fewer experiment-specific parameters. We illustrate these issues using simulations.We further demonstrate how SCR precision can be used to evaluate design choices on a field survey of little spotted kiwi (Apteryx owenii). We show that precision correctly measures tradeoffs involving sampling effort. As a case study, we compare automated call recognition software with human annotations. The proposed metric captured the tradeoff between missed calls (8% loss of precision when using the software) and faster data through-put (60% gain), while common metrics based on per-second agreement failed to identify optimal improvements and could be inflated by deleting data.Due to the flexibility of SCR framework, the approach presented here can be applied to a wide range of different survey designs. As the precision is directly related to the power of detecting temporal trends or other effects in the subsequent inference, this metric evaluates design choices at the application level, and can capture tradeoffs that are missed by stage-specific metrics, thus enabling reliable comparison between different experimental designs and analysis methods.

2019 ◽  
Vol 9 (12) ◽  
pp. 2531 ◽  
Author(s):  
François Blanchard ◽  
Joel Edouard Nkeck ◽  
Dominique Matte ◽  
Riad Nechache ◽  
David G. Cooke

Cost effective imaging is required for a wide range of scientific and engineering applications. For electromagnetic waves in the terahertz (THz) frequency range, a key missing element that has prevented widespread applications in this spectral range is an inexpensive and efficient imaging device. In recent years, vanadium oxide based thermal sensors have rapidly entered the market for night vision capability. At the same time, sensors based on this technology have been applied to the THz domain, but with two orders of magnitude larger pricing range. Here we show that, with a simple modification, a commercially available thermal imaging camera can function as a THz imaging device. By comparing a commercially available THz camera and this low-cost device, we identify the main sensitivity difference is not attributed to anything intrinsic to the devices, but rather to the analog-to-digital converter and dynamic background subtraction capability. This demonstration of a low-cost THz camera may aid in the rapid development of affordable THz imaging solutions for industrial and scientific applications.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Biostatistics ◽  
2019 ◽  
Author(s):  
Dane R Van Domelen ◽  
Emily M Mitchell ◽  
Neil J Perkins ◽  
Enrique F Schisterman ◽  
Amita K Manatunga ◽  
...  

SUMMARYMeasuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1125
Author(s):  
Raluca Nicu ◽  
Florin Ciolacu ◽  
Diana E. Ciolacu

Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising “green” materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals—CNC, cellulose nanofibrils—CNF, and bacterial nanocellulose—BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 961-972 ◽  
Author(s):  
Marie-Jeanne Perrot-Minnot ◽  
Li Rong Guo ◽  
John H Werren

Abstract Wolbachia are cytoplasmically inherited bacteria responsible for reproductive incompatibility in a wide range of insects. There has been little exploration, however, of within species Wolbachia polymorphisms and their effects on compatibility. Here we show that some strains of the parasitic wasp Nasonia vitripennis are infected with two distinct bacterial strains (A and B) whereas others are singly infected (A or B). Double and single infections are confirmed by both PCR amplification and Southern analysis of genomic DNA. Furthermore, it is shown that prolonged larval diapause (the overwintering stage of the wasp) of a double-infected strain can lead to stochastic loss of one or both bacterial strains. After diapause of a double-infected line, sublines were produced with AB, A only, B only or no Wolbachia. A and B sublines are bidirectionally incompatible, whereas males from AB lines are unidirectionally incompatible with females of A and B sublines. Results therefore show rapid development of bidirectional incompatibility within a species due to segregation of associated symbiotic bacteria.


Oryx ◽  
2011 ◽  
Vol 45 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Özgün Emre Can ◽  
İrfan Kandemi̇r ◽  
İnci̇ Togan

AbstractThe wildcat Felis silvestris is a protected species in Turkey but the lack of information on its status is an obstacle to conservation initiatives. To assess the status of the species we interviewed local forestry and wildlife personnel and conducted field surveys in selected sites in northern, eastern and western Turkey during 2000–2007. In January–May 2006 we surveyed for the wildcat using 16 passive infrared-trigged camera traps in Yaylacı k Research Forest, a 50-km2 forest patch in Yenice Forest in northern Turkey. A total sampling effort of 1,200 camera trap days over 40 km2 yielded photo-captures of eight individual wildcats over five sampling occasions. Using the software MARK to estimate population size the closed capture–recapture model M0, which assumes a constant capture probability among all occasions and individuals, best fitted the capture history data. The wildcat population size in Yaylacı k Research Forest was estimated to be 11 (confidence interval 9–23). Yenice Forest is probably one of the most important areas for the long-term conservation of the wildcat as it is the largest intact forest habitat in Turkey with little human presence, and without human settlements, and with a high diversity of prey species. However, it has been a major logging area and is not protected. The future of Yenice Forest and its wildcat population could be secured by granting this region a protection status and enforcing environmental legislation.


2018 ◽  
Vol 66 (10) ◽  
pp. 1487-1491 ◽  
Author(s):  
Jean B Nachega ◽  
Nadia A Sam-Agudu ◽  
Lynne M Mofenson ◽  
Mauro Schechter ◽  
John W Mellors

Abstract Although significant progress has been made, the latest data from low- and middle-income countries show substantial gaps in reaching the third “90%” (viral suppression) of the UNAIDS 90-90-90 goals, especially among vulnerable and key populations. This article discusses critical gaps and promising, evidence-based solutions. There is no simple and/or single approach to achieve the last 90%. This will require multifaceted, scalable strategies that engage people living with human immunodeficiency virus, motivate long-term treatment adherence, and are community-entrenched and ‑supported, cost-effective, and tailored to a wide range of global communities.


Sign in / Sign up

Export Citation Format

Share Document