scholarly journals Discriminative SKP2 interactions with CDK-cyclin complexes support a cyclin A-specific role in p27KIP1 degradation

2020 ◽  
Author(s):  
Marco Salamina ◽  
Bailey C. Montefiore ◽  
Mengxi Liu ◽  
Daniel J. Wood ◽  
Richard Heath ◽  
...  

AbstractThe SCFSKP2 ubiquitin ligase relieves G1 checkpoint control of CDK-cyclin complexes by promoting p27KIP1 degradation. We describe reconstitution of stable complexes containing SKP1-SKP2 and CDK1-cyclin B or CDK2-cyclin A/E, mediated by the CDK regulatory subunit CKS1. We further show that a direct interaction between a SKP2 N-terminal motif and cyclin A can stabilize SKP1-SKP2-CDK2-cyclin A complexes in the absence of CKS1. We identify the SKP2 binding site on cyclin A and demonstrate the site is not present in cyclin B or cyclin E. This site is distinct from but overlapping with features that mediate binding of p27KIP1 and other G1 cyclin regulators to cyclin A. We propose that the capacity of SKP2 to engage with CDK2-cyclin A by more than one structural mechanism provides a way to fine tune the degradation of p27KIP1 and distinguishes cyclin A from other G1 cyclins to ensure orderly cell cycle progression.

1998 ◽  
Vol 72 (5) ◽  
pp. 3729-3741 ◽  
Author(s):  
Bryan S. Salvant ◽  
Elizabeth A. Fortunato ◽  
Deborah H. Spector

ABSTRACT Human cytomegalovirus (HCMV) infection inhibits cell cycle progression and alters the expression of cyclins E, A, and B (F. M. Jault, J.-M. Jault, F. Ruchti, E. A. Fortunato, C. Clark, J. Corbeil, D. D. Richman, and D. H. Spector, J. Virol. 69:6697–6704, 1995). In this study, we examined cell cycle progression, cyclin gene expression, and early viral events when the infection was initiated at different points in the cell cycle (G0, G1, and S). In all cases, infection led to cell cycle arrest. Cells infected in G0 or G1phase also showed a complete or partial absence, respectively, of cellular DNA synthesis at a time when DNA synthesis occurred in the corresponding mock-infected cells. In contrast, when cells were infected near or during S phase, many cells were able to pass through S phase and undergo mitosis prior to cell cycle arrest. S-phase infection also produced a delay in the appearance of the viral cytopathic effect and in the synthesis of immediate-early and early proteins. Labeling of cells with bromodeoxyuridine immediately prior to HCMV infection in S phase revealed that viral protein expression occurred primarily in cells which were not engaged in DNA synthesis at the time of infection. The viral-mediated induction of cyclin E, maintenance of cyclin-B protein levels, and inhibitory effects on the accumulation of cyclin A were not significantly affected when infection occurred during different phases of the cell cycle (G0, G1, and S). However, there was a delay in the observed inhibition of cyclin A in cells infected during S phase. This finding was in accord with the pattern of cell cycle progression and delay in viral gene expression associated with S-phase infection. Analysis of the mRNA revealed that the effects of the virus on cyclin E and cyclin A, but not on cyclin B, were primarily at the transcriptional level.


2020 ◽  
Vol 134 (7) ◽  
pp. 791-805 ◽  
Author(s):  
Jinhui Lü ◽  
Qian Zhao ◽  
Xin Ding ◽  
Yuefan Guo ◽  
Yuan Li ◽  
...  

Abstract The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.


2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


2018 ◽  
Vol 115 (40) ◽  
pp. 10016-10021 ◽  
Author(s):  
Keelan Z. Guiley ◽  
Audra N. Iness ◽  
Siddharth Saini ◽  
Sarvind Tripathi ◽  
Joseph S. Lipsick ◽  
...  

The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb–MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 316-316
Author(s):  
Lequn Li ◽  
Wayne R. Godfrey ◽  
Stephen B. Porter ◽  
Ying Ge ◽  
Carle H. June ◽  
...  

Abstract CD4+CD25+ regulatory T cells (Tr) are negative regulators of immune responses. Studies of human Tr are restricted by their small numbers in peripheral blood and their hypoproliferative state. A recently established method achieved in vitro expansion and generation of Tr cell lines (Godfrey et al; Blood 2004,104:453-61). This approach facilitates the evaluation of cultured Tr cells as a novel form of immunosuppressive therapy and provides a system for molecular analysis of Tr. Activation of Ras and MAP kinases is mandatory for IL-2 production, viability and cell cycle progression of T cells. In anergic T cells activation of these signaling events is impaired, whereas activation of Rap1 is retained. Subsequently, anergic cells have defective IL-2 production, impaired cell cycle progression, and increased susceptibility to apoptosis. In the current study, we sought to determine the signaling and biochemical properties of Tr. Human CD4+CD25+ (Tr) and control CD4+CD25− (Tc) cell lines were generated from human cord blood cells. We examined activation of Ras, Rap1 and MAP kinases as well as cell cycle progression and cell viability, in response to TCR/CD3-plus-CD28 mediated stimulation. Stimulation was done for 15 min, 2 and 16 hrs for assessment of signaling events or for 24, 48 and 72 hrs for assessment of cell cycle progression and viability. Although activation of Rap1 was not affected, activation of Ras was reduced in Tr as compared to Tc. Activation of JNK and Erk1/2 MAP kinases was also significantly impaired. Both Tr and Tc entered the cell cycle and expressed cyclin E and cyclin A at 24 and 48 hrs of culture. However, p27 was downregulated only in Tc and not in Tr and hyperphosphorylation of Rb, which is the hallmark of cell cycle progression, was detected only in the Tc and not in the Tr population. At 72 hrs of culture, expression of cyclin E and cyclin A was dramatically diminished in Tr whereas it remained unchanged in Tc. More strikingly, expression of p27 in Tr was increased to levels higher than background. Since Tr do not produce IL-2, we examined whether addition of exogenous IL-2 would downregulate p27 and rescue Tr from defective cell cycle progression, similarly to its effect on anergic cells. Addition of exogenous IL-2 resulted in decrease of p27, sustained increase of cyclin E and cyclin A and cell cycle progression. Besides inhibiting cell cycle progression, p27 also promotes apoptosis. Therefore, we examined whether Tr had a higher susceptibility to apoptosis. As determined by Annexin V staining, Tr had a high degree of apoptosis only at 72 hrs of culture, when p27 expression was highly upregulated. Exogenous IL-2 reversed both p27 upregulation and apoptosis. Addition of IL-2 to Tr, also resulted in sustained IL-2-receptor-mediated activation of Erk1/2 at levels equivalent to those of Tc. Thus Tr cells share many biochemical and molecular characteristics of anergy, including defective TCR/CD3-plus-CD28-mediated activation of Ras and MAP kinases, increased expression of p27, defective cell cycle progression and high susceptibility to apoptosis. Moreover, these results suggest that TCR/CD3-mediated and IL-2 receptor-mediated signals converge at the level of MAP kinases to determine the fate of Tr cells towards expansion or cell cycle arrest and subsequent apoptosis.


2006 ◽  
Vol 34 (5) ◽  
pp. 633-645 ◽  
Author(s):  
S.J. Boulton

Inherited germline mutations in either BRCA1 or BRCA2 confer a significant lifetime risk of developing breast or ovarian cancer. Defining how these two genes function at the cellular level is essential for understanding their role in tumour suppression. Although BRCA1 and BRCA2 were independently cloned over 10 years ago, it is only in the last few years that significant progress has been made towards understanding their function in cells. It is now widely accepted that both genes play critical roles in the maintenance of genome stability. Evidence implicates BRCA2 as an integral component of the homologous recombination machinery, whereas BRCA1 is an E3 ubiquitin ligase that has an impact on DNA repair, transcriptional regulation, cell-cycle progression and meiotic sex chromosome inactivation. In this article, I will review the most recent advances and provide a perspective of potential future directions in this field.


2019 ◽  
Vol 10 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Saeed Noorolyai ◽  
Elham Baghbani ◽  
Leili Aghebati Maleki ◽  
Amir Baghbanzadeh Kojabad ◽  
Dariush Shanehbansdi ◽  
...  

Purpose: Colorectal cancer (CRC) remains a universal and lethal cancer owing to metastatic and relapsing disease. Currently, the role of microRNAs has been checked in tumorigeneses. Numerous studies have revealed that between the tumor suppressor miRNAs, the reduced expression of miR-146a-5p and -193a-5p in several cancers including CRC tissues are related with tumor progression and poor prognosis of patients. The purpose of this study is to examine the role of miR-146 a-5p and -193 a-5p in CRC cell cycle progression. Methods: The miR-193a-5p and -146 a-5p mimics were transfected into HT-29 CRC cells via jetPEI transfection reagent and their impact was assessed on p53, cyclin B, and NF-kB gene expression. The inhibitory effect of these miRNAs on cell cycle was assessed by flow cytometry. The consequence of miR-193a-5p and miR-146 a-5p on the protein expression level of Murine double minute 2 (MDM2) was assessed by western blotting. Results: miR193a-5p and -146a-5p regulated the expression of MDM2 protein and p53, cyclin B, and NF-kB gene expression in CRC cells. Treatment of HT-29 cells with miRNA-146a-5p and -193a-5p induced G1 cell cycle arrest. Conclusion: The findings of our study suggest that miR146a-5p and -193a-5p may act as a potential tumor suppressor by their influence on cell cycle progression in CRC cells. Thus, miRNA-146a-5p and -193a-5p restoration may be recommended as a potential therapeutic goal in the treatment of CRC patients.


Sign in / Sign up

Export Citation Format

Share Document