scholarly journals The Adaptor Protein Complex 1 limits E-cadherin endocytosis during epithelial morphogenesis

2020 ◽  
Author(s):  
Miguel Ramírez Moreno ◽  
Katy Boswell ◽  
Natalia A. Bulgakova

AbstractIntracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds a large number of specific cargos. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic folds caused by trafficking defects of integrins. This occurs concurrently with an increase in the apical cell area and induction of cell death due to defects in E-cadherin trafficking. We discovered a distinct pool of AP-1 localizes at the apical Adherens Junctions, where it limits internalization of E-cadherin from the cell surface. Upon AP-1 knockdown, the accompanying hyperinternalization of E-cadherin induces cell death by an uncharacterised mechanism with a potential tumour-suppressive role. Simultaneously, cells increase expression of E-cadherin in a compensatory mechanism to maintain cell-cell adhesion.

2021 ◽  
Author(s):  
Miguel Ramírez Moreno ◽  
Katy Boswell ◽  
Helen L Casbolt ◽  
Natalia A Bulgakova

Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargos. We examined roles of the AP-1 complex in epithelial morphogenesis, using the  Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1, which localizes at the subapical Adherens Junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumour-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.


2002 ◽  
Vol 13 (6) ◽  
pp. 2045-2056 ◽  
Author(s):  
Matthias Geyer ◽  
Oliver T. Fackler ◽  
B. Matija Peterlin

The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that facilitates the acidification of intracellular compartments in eukaryotic cells and plays an important role in receptor-mediated endocytosis, intracellular trafficking processes, and protein degradation. In this study we show that the C-terminal fragment of 350 residues of the regulatory subunit H (V1H) of the V-ATPase shares structural and functional homologies with the β-chains of adaptor protein complexes. Moreover, the fragment is similar to a region in the β-subunit of COPI coatomer complexes, which suggests the existence of a shared domain in these three different families of proteins. For β-adaptins, this fragment binds to cytoplasmic di-leucine–based sorting motifs such as in HIV-1 Nef that mediate endocytic trafficking. Expression of this fragment in cells blocks the internalization of transmembrane proteins, which depend on di-leucine–based motifs, whereas mutation of the consensus sequence GEY only partly diminishes the recognition of the sorting motif. Based on recent structural analysis, our results suggest that the di-leucine-binding domain consists of a HEAT or ARM repeat protein fold.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Preeti Singh ◽  
Peter S. Hanson ◽  
Christopher M. Morris

Sirtuins are highly conserved lysine deacetylases involved in ageing, energy production, and lifespan extension. The mammalian SIRT2 has been implicated in Parkinson’s disease (PD) where studies suggest SIRT2 promotes neurodegeneration. We therefore evaluated the effects of SIRT2 manipulation in toxin treated SH-SY5Y cells and determined the expression and activity of SIRT2 in postmortem brain tissue from patients with PD. SH-SY5Y viability in response to oxidative stress induced by diquat or rotenone was measured following SIRT2 overexpression or inhibition of deacetylase activity, along withα-synuclein aggregation. SIRT2 in human tissues was evaluated using Western blotting, immunohistochemistry, and fluorometric activity assays. In SH-SY5Y cells, elevated SIRT2 protected cells from rotenone or diquat induced cell death and enzymatic inhibition of SIRT2 enhanced cell death. SIRT2 protection was mediated, in part, through elevated SOD2 expression. SIRT2 reduced the formation ofα-synuclein aggregates but showed minimal colocalisation withα-synuclein. In postmortem PD brain tissue, SIRT2 activity was elevated compared to controls but also elevated in other neurodegenerative disorders. Results from both in vitro work and brain tissue suggest that SIRT2 is necessary for protection against oxidative stress and higher SIRT2 activity in PD brain may be a compensatory mechanism to combat neuronal stress.


1992 ◽  
Vol 116 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D A Wollner ◽  
K A Krzeminski ◽  
W J Nelson

The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.


2001 ◽  
Vol 114 (6) ◽  
pp. 1237-1246 ◽  
Author(s):  
M.L. Troxell ◽  
D.J. Loftus ◽  
W.J. Nelson ◽  
J.A. Marrs

MDCK cells were engineered to reversibly express mutant E-cadherin protein with a large extracellular deletion. Mutant cadherin overexpression reduced the expression of endogenous E- and K-cadherins in MDCK cells to negligible levels, resulting in decreased cell adhesion. Despite severe impairment of the cadherin adhesion system, cells overexpressing mutant E-cadherin formed fluid-filled cysts in collagen gel cultures and responded to hepatocyte growth factor/scatter factor (HGF/SF) that induced cellular extension formation with a frequency similar to that of control cysts. However, cells were shed from cyst walls into the lumen and into the collagen matrix prior to and during HGF/SF induced tubule extension. Despite the propensity for cell dissociation, MDCK cells lacking cadherin adhesion molecules were not capable of anchorage-independent growth in soft agar and cell proliferation rate was not affected. Thus, cadherin loss does not induce transformation, despite inducing an invasive phenotype, a later stage of tumor progression. These experiments are especially relevant to tumor progression in cells with altered E-cadherin expression, particularly tumor samples with identified E-cadherin extracellular domain genomic mutations.


2005 ◽  
Vol 16 (2) ◽  
pp. 550-561 ◽  
Author(s):  
Hanane Khoury ◽  
Monica A. Naujokas ◽  
Dongmei Zuo ◽  
Veena Sangwan ◽  
Melanie M. Frigault ◽  
...  

Activation of the hepatocyte growth factor receptor Met induces a morphogenic response and stimulates the formation of branching tubules by Madin-Darby canine kidney (MDCK) epithelial cells in three-dimensional cultures. A constitutively activated ErbB2/Neu receptor, NeuNT, promotes a similar invasive morphogenic program in MDCK cells. Because both receptors are expressed in breast epithelia, are associated with poor prognosis, and hepatocyte growth factor (HGF) is expressed in stroma, we examined the consequence of cooperation between these signals. We show that HGF disrupts NeuNT-induced epithelial morphogenesis, stimulating the breakdown of cell-cell junctions, dispersal, and invasion of single cells. This correlates with a decrease in junctional proteins claudin-1 and E-cadherin, in addition to the internalization of the tight junction protein ZO-1. HGF-induced invasion of NT-expressing cells is abrogated by pretreatment with a pharmacological inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, which restores E-cadherin and ZO-1 at cell-cell junctions, establishing the involvement of MEK-dependent pathways in this process. These results demonstrate that physiological signals downstream from the HGF/Met receptor synergize with ErbB2/Neu to enhance the malignant phenotype, promoting the breakdown of cell-cell junctions and enhanced cell invasion. This is particularly important for cancers where ErbB2/Neu is overexpressed and HGF is a physiological growth factor found in the stroma.


2018 ◽  
Author(s):  
Rajendra Singh ◽  
Charlotte Stoneham ◽  
Christopher Lim ◽  
Xiaofei Jia ◽  
Javier Guenaga ◽  
...  

AbstractProtein trafficking in the endosomal system involves the recognition of specific signals within the cytoplasmic domains (CDs) of transmembrane proteins by clathrin adaptors. One such signal is the phosphoserine acidic cluster (PSAC), the prototype of which is in the endoprotease Furin. How PSACs are recognized by clathrin adaptors has been controversial. We reported previously that HIV-1 Vpu, which modulates cellular immunoreceptors, contains a PSAC that binds to the µ subunits of clathrin adaptor protein (AP) complexes. Here, we show that the CD of Furin binds the µ subunits of AP-1 and AP-2 in a phosphorylation-dependent manner. Moreover, we identify a PSAC in a cytoplasmic loop of the cellular transmembrane Serinc3, an inhibitor of the infectivity of retroviruses. The two serines within the PSAC of Serinc3 are phosphorylated by casein kinase II and mediate interaction with the µ subunits in vitro. The sites of these serines vary among mammals in a manner consistent with host-pathogen conflict, yet the Serinc3-PSAC seems dispensible for anti-HIV activity and for counteraction by HIV-1 Nef. The CDs of Vpu, Furin, and the PSAC-containing loop of Serinc3 each bind the μ subunit of AP-2 (µ2) with similar affinities, but they appear to utilize different basic regions on µ2. The Serinc3 loop requires a region previously reported to bind the acidic plasma membrane lipid phosphatidylinositol-4,5-bisphosphate. These data suggest that the PSACs within different proteins recognize different basic regions on the µ surface, providing the potential to inhibit the activity of viral proteins without necessarily affecting cellular protein trafficking.


2011 ◽  
Vol 193 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria Teresa Abreu-Blanco ◽  
Jeffrey M. Verboon ◽  
Susan M. Parkhurst

When single cells or tissues are injured, the wound must be repaired quickly in order to prevent cell death, loss of tissue integrity, and invasion by microorganisms. We describe Drosophila as a genetically tractable model to dissect the mechanisms of single-cell wound repair. By analyzing the expression and the effects of perturbations of actin, myosin, microtubules, E-cadherin, and the plasma membrane, we define three distinct phases in the repair process—expansion, contraction, and closure—and identify specific components required during each phase. Specifically, plasma membrane mobilization and assembly of a contractile actomyosin ring are required for this process. In addition, E-cadherin accumulates at the wound edge, and wound expansion is excessive in E-cadherin mutants, suggesting a role for E-cadherin in anchoring the actomyosin ring to the plasma membrane. Our results show that single-cell wound repair requires specific spatial and temporal cytoskeleton responses with distinct components and mechanisms required at different stages of the process.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Xaioyun Guo ◽  
Haifeng Yin ◽  
Yi Chen ◽  
Lei Li ◽  
Jing Li ◽  
...  

Necroptosis has emerged as a new form of programmed cell death implicated in a number of pathological conditions such as ischemic injury, neurodegenerative disease, and viral infection. Recent studies indicate that TGFβ-activated kinase 1 (TAK1) is nodal regulator of necroptotic cell death, but the underlying molecular regulatory mechanisms remain elusive. Here we reported that TAK1 regulates necroptotic signaling as well as caspase 8 activation through both NFκB-dependent and -independent mechanisms. Inhibition of TAK1 promoted TNFα-induced necroptosis through the induction of RIP1 phosphorylation/activation and necrosome formation, in the presence of ongoing caspase activation. Further, inhibition of TAK1 triggered two caspase 8 activation pathways through the induction of RIP1-FADD-caspase 8 complex as well as FLIP cleavage/degradation. Mechanistically, our data uncovered an essential role of the adaptor protein TRADD in caspase 8 activation and necrosome formation triggered by TAK1 inhibition. Moreover, ablation of the deubiqutinase CYLD prevented both apoptotic and necroptotic signaling induced by TAK1 inhibition, whereas deletion of the E3 ubiquitin ligase TRAF2 had the opposite effect. Finally, blocking the ubiquitin-proteasome pathway prevented the degradation of key necroptotic signaling proteins and necrosome formation. Thus we identified novel regulatory mechanisms underling the critical role of TAK1 in necroptotic signaling through regulation of multiple cell death checkpoints. Targeting key components of the necroptotic pathway (e.g., TRADD and CYLD) and the ubiquitin-proteasome pathway may represent novel therapeutic strategies for pathological conditions driven by necroptosis.


Sign in / Sign up

Export Citation Format

Share Document