scholarly journals ExoNet Database: Wearable Camera Images of Human Locomotion Environments

2020 ◽  
Author(s):  
Brock Laschowski ◽  
William McNally ◽  
Alexander Wong ◽  
John McPhee

AbstractAdvances in computer vision and artificial intelligence are allowing researchers to develop environment recognition systems for powered lower-limb exoskeletons and prostheses. However, small-scale and private training datasets have impeded the widespread development and dissemination of image classification algorithms for classifying human walking environments. To address these limitations, we developed ExoNet - the first open-source, large-scale hierarchical database of high-resolution wearable camera images of human locomotion environments. Unparalleled in scale and diversity, ExoNet contains over 5.6 million RGB images of different indoor and outdoor real-world walking environments, which were collected using a lightweight wearable camera system throughout the summer, fall, and winter seasons. Approximately 923,000 images in ExoNet were human-annotated using a 12-class hierarchical labelling architecture. Available publicly through IEEE DataPort, ExoNet offers an unprecedented communal platform to train, develop, and compare next-generation image classification algorithms for human locomotion environment recognition. Besides the control of powered lower-limb exoskeletons and prostheses, applications of ExoNet could extend to humanoids and autonomous legged robots.

2021 ◽  
Author(s):  
Brokoslaw Laschowski ◽  
William McNally ◽  
Alexander Wong ◽  
John McPhee

Robotic exoskeletons require human control and decision making to switch between different locomotion modes, which can be inconvenient and cognitively demanding. To support the development of automated locomotion mode recognition systems (i.e., high-level controllers), we designed an environment recognition system using computer vision and deep learning. We collected over 5.6 million images of indoor and outdoor real-world walking environments using a wearable camera system, of which ~923,000 images were annotated using a 12-class hierarchical labelling architecture (called the ExoNet database). We then trained and tested the EfficientNetB0 convolutional neural network, designed for efficiency using neural architecture search, to predict the different walking environments. Our environment recognition system achieved ~73% image classification accuracy. While these preliminary results benchmark EfficientNetB0 on the ExoNet database, further research is needed to compare different image classification algorithms to develop an accurate and real-time environment-adaptive locomotion mode recognition system for robotic exoskeleton control.


Author(s):  
Stuart Robson ◽  
Lindsay MacDonald ◽  
Stephen Kyle ◽  
Jan Boehm ◽  
Mark Shortis

As part of the United Kingdom’s Light Controlled Factory project, University College London aims to develop a large-scale multi-camera system for dimensional control tasks in manufacturing, such as part assembly and tracking. Accuracy requirements in manufacturing are demanding, and improvements in the modelling and analysis of both camera imaging and the measurement environment are essential. A major aspect to improved camera modelling is the use of monochromatic imaging of retro-reflective target points, together with a camera model designed for a particular illumination wavelength. A small-scale system for laboratory testing has been constructed using eight low-cost monochrome cameras with C-mount lenses on a rigid metal framework. Red, green and blue monochromatic light-emitting diode ring illumination has been tested, with a broadband white illumination for comparison. Potentially, accuracy may be further enhanced by the reduction in refraction errors caused by a non-homogeneous factory environment, typically manifest in varying temperatures in the workspace. A refraction modelling tool under development in the parallel European Union LUMINAR project is being used to simulate refraction in order to test methods which may be able to reduce or eliminate this effect in practice.


Author(s):  
Alyse Davies ◽  
Margaret Allman-Farinelli ◽  
Katherine Owen ◽  
Louise Signal ◽  
Cameron Hosking ◽  
...  

Device-based assessments are frequently used to measure physical activity (PA) but contextual measures are often lacking. There is a need for new methods, and one under-explored option is the use of wearable cameras. This study tested the use of wearable cameras in PA measurement by comparing intensity classifications from accelerometers with wearable camera data. Seventy-eight 18–30-year-olds wore an Actigraph GT9X link accelerometer and Autographer wearable camera for three consecutive days. An image coding schedule was designed to assess activity categories and activity sub-categories defined by the 2011 Compendium of Physical Activities (Compendium). Accelerometer hourly detailed files processed using the Montoye (2020) cut-points were linked to camera data using date and time stamps. Agreement was examined using equivalence testing, intraclass correlation coefficient (ICC) and Spearman’s correlation coefficient (rho). Fifty-three participants contributing 636 person-hours were included. Reliability was moderate to good for sedentary behavior (rho = 0.77), light intensity activities (rho = 0.59) and moderate-to-vigorous physical activity (MVPA) (rho = 0.51). The estimates of sedentary behavior, light activity and MVPA from the two methods were similar, but not equivalent. Wearable cameras are a potential complementary tool for PA measurement, but practical challenges and limitations exist. While wearable cameras may not be feasible for use in large scale studies, they may be feasible in small scale studies where context is important.


Author(s):  
M. Hillemann ◽  
B. Jutzi

Unmanned Aerial Vehicle (UAV) with adequate sensors enable new applications in the scope between expensive, large-scale, aircraftcarried remote sensing and time-consuming, small-scale, terrestrial surveyings. To perform these applications, cameras and laserscanners are a good sensor combination, due to their complementary properties. To exploit this sensor combination the intrinsics and relative poses of the individual cameras and the relative poses of the cameras and the laserscanners have to be known. In this manuscript, we present a calibration methodology for the <i>Unified Intrinsic and Extrinsic Calibration of a Multi-Camera-System and a Laserscanner (UCalMiCeL)</i>. The innovation of this methodology, which is an extension to the calibration of a single camera to a line laserscanner, is an unifying bundle adjustment step to ensure an optimal calibration of the entire sensor system. We use generic camera models, including pinhole, omnidirectional and fisheye cameras. For our approach, the laserscanner and each camera have to share a joint field of view, whereas the fields of view of the individual cameras may be disjoint. The calibration approach is tested with a sensor system consisting of two fisheye cameras and a line laserscanner with a range measuring accuracy of 30&amp;thinsp;<i>mm</i>. We evaluate the estimated relative poses between the cameras quantitatively by using an additional calibration approach for Multi-Camera-Systems based on control points which are accurately measured by a motion capture system. In the experiments, our novel calibration method achieves a relative pose estimation with a deviation below 1.8&amp;deg; and 6.4&amp;thinsp;<i>mm</i>.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


2019 ◽  
Vol 61 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Loretta Lees

Abstract Gentrification is no-longer, if it ever was, a small scale process of urban transformation. Gentrification globally is more often practised as large scale urban redevelopment. It is state-led or state-induced. The results are clear – the displacement and disenfranchisement of low income groups in favour of wealthier in-movers. So, why has gentrification come to dominate policy making worldwide and what can be done about it?


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Bùi Thị Bích Lan

In Vietnam, the construction of hydropower projects has contributed significantly in the cause of industrialization and modernization of the country. The place where hydropower projects are built is mostly inhabited by ethnic minorities - communities that rely primarily on land, a very important source of livelihood security. In the context of the lack of common productive land in resettlement areas, the orientation for agricultural production is to promote indigenous knowledge combined with increasing scientific and technical application; shifting from small-scale production practices to large-scale commodity production. However, the research results of this article show that many obstacles in the transition process are being posed such as limitations on natural resources, traditional production thinking or the suitability and effectiveness of scientific - technical application models. When agricultural production does not ensure food security, a number of implications for people’s lives are increasingly evident, such as poverty, preserving cultural identity, social relations and resource protection. Since then, it has set the role of the State in researching and building appropriate agricultural production models to exploit local strengths and ensure sustainability.


2018 ◽  
Vol 1 (3) ◽  
pp. 156-165 ◽  
Author(s):  
Nasirudeen Abdul Fatawu

Recent floods in Ghana are largely blamed on mining activities. Not only are lives lost through these floods, farms andproperties are destroyed as a result. Water resources are diverted, polluted and impounded upon by both large-scale minersand small-scale miners. Although these activities are largely blamed on behavioural attitudes that need to be changed, thereare legal dimensions that should be addressed as well. Coincidentally, a great proportion of the water resources of Ghana arewithin these mining areas thus the continual pollution of these surface water sources is a serious threat to the environmentand the development of the country as a whole. The environmental laws need to be oriented properly with adequate sanctionsto tackle the impacts mining has on water resources. The Environmental Impact Assessment (EIA) procedure needs to bestreamlined and undertaken by the Environmental Protection Agency (EPA) and not the company itself.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document