scholarly journals The worldwide invasion of Drosophila suzukii is accompanied by a large increase of transposable element load and a small number of putatively adaptive insertions

2020 ◽  
Author(s):  
Vincent Mérel ◽  
Patricia Gibert ◽  
Inessa Buch ◽  
Valentina Rodriguez Rada ◽  
Arnaud Estoup ◽  
...  

AbstractTransposable Elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we portrayed the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo, and found that TEs occupy 47% of the genome and are mostly located in gene poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied variation of TE abundance in genomic data from 16 invasive and six native populations (of D. suzukii). We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity a proxy of effective population size. We did not find any correlation between TE contents and bio-climatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 5,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g. transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.

2019 ◽  
Vol 62 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Liang Qu ◽  
Manman Shen ◽  
Jun Guo ◽  
Xingguo Wang ◽  
Taocun Dou ◽  
...  

Abstract. Albumen quality is a leading economic trait in the chicken industry. Major studies have paid attention to genetic architecture underlying albumen quality. However, the putative quantitative trait locus (QTL) for this trait is still unclear. In this genome-wide association study, we used an F2 resource population to study longitudinal albumen quality. Seven single-nucleotide polymorphism (SNP) loci were found to be significantly (p<8.43×10-7) related to albumen quality by univariate analysis, while 11 SNPs were significantly (p<8.43×10-7) associated with albumen quality by multivariate analysis. A QTL on GGA4 had a pervasive function on albumen quality, including a SNP at the missense of NCAPG, and a SNP at the intergenic region of FGFPB1. It was further found that the putative QTLs at GGA1, GGA2, and GGA7 had the strongest effects on albumen height (AH) at 32 weeks, Haugh units (HU) at 44 weeks, and AH at 55 weeks. Moreover, novel SNPs on GGA5 and GGA3 were associated with AH and HU at 32, 44, and 48 weeks of age. These results confirmed the regions for egg weight that were detected in a previous study and were similar with QTL for albumen quality. These results showed that GGA4 had the strongest effect on albumen quality. Only a few significant loci were detected for most characteristics probably reflecting the attributes of a pleiotropic gene and a minor-polygene in quantitative traits.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Martin Johnsson ◽  
Andrew Whalen ◽  
Roger Ros-Freixedes ◽  
Gregor Gorjanc ◽  
Ching-Yi Chen ◽  
...  

Abstract Background Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. Results Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. Conclusions Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


Author(s):  
Priyanka Gupta ◽  
Hafssa Kabbaj ◽  
Khaoula El Hassouni ◽  
Marco Maccaferri ◽  
Miguel Sabchez-Garcia ◽  
...  

Flowering time is a critical stage for crop development as it regulates the ability of plants to adapt to an environment. To understand the genetic control of flowering time, a genome wide association study (GWAS) was conducted to identify the genomic regions associated with the control of this trait in durum wheat (Triticum durum Desf.). A total of 96 landraces and 288 modern lines were evaluated for days to heading, growing degree days, and accumulated day length at flowering across 13 environments spread across Morocco, Lebanon, Mauritania, and Senegal. These environments were grouped into four pheno-environments based on temperatures, day length and other climatic variables. Genotyping with 35K Axiom array generated 7,652 polymorphic SNPs in addition to 3 KASP markers associated to known flowering genes. In total, 34 significant QTLs were identified in both landraces and modern lines. Some QTLs had strong association with already known regulatory photoperiod genes, Ppd-A and Ppd-B and vernalization genes Vrn-A1, and Vrn3. However, these loci explained only 5 to 20% of variance for days to heading. Seven QTLs overlapped between the two germplasm groups in which Q.ICD.Eps-03 and Q.ICD.Vrn-17 consistently affected flowering time in all the pheno-environments, while Q.ICD.Eps-11 and Q.ICD.Ppd-12 were significant only in two pheno-environments and the combined analysis across all environments. These results help clarify the genetic mechanism controlling flowering time in durum wheat and show some clear distinctions to what is known for common wheat (Triticum aestivum L.)


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1786
Author(s):  
Soumeya Rida ◽  
Oula Maafi ◽  
Ana López-Malvar ◽  
Pedro Revilla ◽  
Meriem Riache ◽  
...  

Drought is one of the most detrimental abiotic stresses hampering seed germination, development, and productivity. Maize is more sensitive to drought than other cereals, especially at seedling stage. Our objective was to study genetic regulation of drought tolerance at germination and during seedling growth in maize. We evaluated 420 RIL with their parents from a multi-parent advanced generation inter-cross (MAGIC) population with PEG-induced drought at germination and seedling establishment. A genome-wide association study (GWAS) was carried out to identify genomic regions associated with drought tolerance. GWAS identified 28 and 16 SNPs significantly associated with germination and seedling traits under stress and well-watered conditions, respectively. Among the SNPs detected, two SNPs had significant associations with several traits with high positive correlations, suggesting a pleiotropic genetic control. Other SNPs were located in regions that harbored major QTLs in previous studies, and co-located with QTLs for cold tolerance previously published for this MAGIC population. The genomic regions comprised several candidate genes related to stresses and plant development. These included numerous drought-responsive genes and transcription factors implicated in germination, seedling traits, and drought tolerance. The current analyses provide information and tools for subsequent studies and breeding programs for improving drought tolerance.


2018 ◽  
Vol 59 (6) ◽  
pp. 994-1004 ◽  
Author(s):  
David Dubois ◽  
Stella Fernandes ◽  
Souad Amiar ◽  
Sheena Dass ◽  
Nicholas J. Katris ◽  
...  

Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.


2018 ◽  
Vol 19 (8) ◽  
pp. 2303 ◽  
Author(s):  
Frank You ◽  
Jin Xiao ◽  
Pingchuan Li ◽  
Zhen Yao ◽  
Gaofeng Jia ◽  
...  

A genome-wide association study (GWAS) was performed on a set of 260 lines which belong to three different bi-parental flax mapping populations. These lines were sequenced to an averaged genome coverage of 19× using the Illumina Hi-Seq platform. Phenotypic data for 11 seed yield and oil quality traits were collected in eight year/location environments. A total of 17,288 single nucleotide polymorphisms were identified, which explained more than 80% of the phenotypic variation for days to maturity (DTM), iodine value (IOD), palmitic (PAL), stearic, linoleic (LIO) and linolenic (LIN) acid contents. Twenty-three unique genomic regions associated with 33 quantitative trait loci (QTL) for the studied traits were detected, thereby validating four genomic regions previously identified. The 33 QTL explained 48–73% of the phenotypic variation for oil content, IOD, PAL, LIO and LIN but only 8–14% for plant height, DTM and seed yield. A genome-wide selective sweep scan for selection signatures detected 114 genomic regions that accounted for 7.82% of the flax pseudomolecule and overlapped with the 11 GWAS-detected genomic regions associated with 18 QTL for 11 traits. The results demonstrate the utility of GWAS combined with selection signatures for dissection of the genetic structure of traits and for pinpointing genomic regions for breeding improvement.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 803 ◽  
Author(s):  
Wang ◽  
Yan ◽  
Li ◽  
Li ◽  
Zhao ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most important oil crops worldwide, and its yet increasing market demand may be met by genetic improvement of yield related traits, which may be facilitated by a good understanding of the underlying genetic base of these traits. Here, we have carried out a genome-wide association study (GWAS) with the aim to identify genomic regions and the candidate genes within these regions that may be involved in determining the phenotypic variation at seven yield-related traits in peanut. For the GWAS analyses, 195 peanut accessions were phenotyped and/or genotyped; the latter was done using a genotyping-by-sequencing approach, which produced a total of 13,435 high-quality single nucleotide polymorphisms (SNPs). Analyses of these SNPs show that the analyzed peanut accessions can be approximately grouped into two big groups that, to some extent, agree with the botanical classification of peanut at the subspecies level. By taking this genetic structure as well as the relationships between the analyzed accessions into consideration, our GWAS analyses have identified 93 non-overlapping peak SNPs that are significantly associated with four of the studied traits. Gene annotation of the genome regions surrounding these peak SNPs have found a total of 311 unique candidate genes. Among the 93 yield-related-trait-associated SNP peaks, 12 are found to be co-localized with the quantitative trait loci (QTLs) that were identified by earlier related QTL mapping studies, and these 12 SNP peaks are only related to three traits and are almost all located on chromosomes Arahy.05 and Arahy.16. Gene annotation of these 12 co-localized SNP peaks have found 36 candidates genes, and a close examination of these candidate genes found one very interesting gene (arahy.RI9HIF), the rice homolog of which produces a protein that has been shown to improve rice yield when over-expressed. Further tests of the arahy.RI9HIF gene, as well as other candidate genes especially those within the more confident co-localized genomic regions, may hold the potential for significantly improving peanut yield.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1089
Author(s):  
Andreia J. Amaral ◽  
Ana L. Pavão ◽  
Luis T. Gama

Ramo Grande is a local cattle breed raised in the archipelago of Azores, with a small and dispersed census, where inbreeding control is of utmost importance. A single nucleotide polymorphism (SNP) Beadchip array was used to assess inbreeding, by analysis of genomic regions harboring contiguous homozygous genotypes named runs of homozygosity (ROH), and to estimate past effective population size by analysis of linkage disequilibrium (LD). Genetic markers associated with production traits were also investigated, exploiting the unique genetic and adaptation features of this breed. A total of 639 ROH with length >4 Mb were identified, with mean length of 14.96 Mb. The mean genomic inbreeding was 0.09, and long segments of ROH were common, indicating recent inbred matings. The LD pattern indicates a large effective population size, suggesting the inflow of exotic germplasm in the past. The genome-wide association study identified novel markers significantly affecting longevity, age at first calving and direct genetic effects on calf weight. These results provide the first evidence of the association of longevity with genes related with DNA recognition and repair, and the association of age at first calving with aquaporin proteins, which are known to have a crucial role in reproduction.


Sign in / Sign up

Export Citation Format

Share Document