scholarly journals The ant fungus garden acts as an external digestive system

2020 ◽  
Author(s):  
Andrés Mauricio Caraballo-Rodríguez ◽  
Sara P. Puckett ◽  
Kathleen E. Kyle ◽  
Daniel Petras ◽  
Ricardo da Silva ◽  
...  

AbstractMost animals digest their food within their own bodies, but some do not. Many species of ants grow fungus gardens that pre-digest food as an essential step of the ants’ nutrient uptake. To better understand this digestion process, we generated a 3D molecular map of an Atta texana fungus garden, revealing chemical modifications mediated by the fungus garden as plant material passes through.

Author(s):  
Vrushali P. Kale Vrushali Purushottam Kale

According to Ayurveda, Jatharagni plays main role in the digestion process. Jatharagni carries its functions through Pachaka pitta. Grahani is an organ of gastrointestinal tract located between Amashaya and Pakwashaya, where digestion takes place. According to classical literature Pitta is same as Agni. Tridosha also plays very important role in the digestion process. In the recent days, irregular life style affects the digestive system and Jatharagni very badly. Whenever Agni gets (Vikrut) unbalanced due to wrong food habits and lifestyle, it should be understood that along with Agni, Pachaka Pitta will also get disturbed. Agnimandya is the root cause of most of the disorders like Grahani. Grahani organ is the main location of Jatharagni. Grahani is the organ where Pachak Pitta and Samanvayu carry out digestion. The most important function of Grahani is digestion of food with the help of Jatharagni, Pachakpitta, Pittadhara Kala and Samnvayu. Agni inside the body, digest the food give strength and maintain health. Samanvayu regulates the movements of the Grahani and helps in digestion. Hence, in this article we attempt to analyze and correlate patho-physiology of Grahani with respect to Physiological analysis of Agni and disturbed doshas. Etiological factors induces imbalance in Jatharagni, Pachak Pitta and Samanvayu and prolonged imbalance state weakens the Pittadhara Kala, which results in disease Grahani. Health of Grahani entirely depends on balanced state of Jatharagni, Pachaka Pitta, Pittadhara Kala and Samanvayu. The irregular life style, incompatible food habits creates Ama causes Grahani, affecting the digestive system and Jatharagni very badly.


2018 ◽  
Author(s):  
Lily Khadempour ◽  
Huan Fan ◽  
Ken Keefover-Ring ◽  
Camila Carlos ◽  
Nilson S. Nagamoto ◽  
...  

AbstractLeaf-cutter ants in the genusAttaare dominant herbivores in the Neotropics. While most species ofAttacut dicots to incorporate into their fungus gardens, some species specialize on grasses. Here we examine the bacterial community associated with the fungus gardens of grass- and dicot-cutter ants to examine how changes in substrate input affect the bacterial community. We sequenced the metagenomes of 12Attafungus gardens, across four species of ants, with a total of 5.316 Gbp of sequence data. We show significant differences in the fungus garden bacterial community composition between dicot- and grass-cutter ants, with grass-cutter ants having lower diversity. Reflecting this difference in community composition, the bacterial functional profiles between the fungus gardens are significantly different. Specifically, grass-cutter ant fungus garden metagenomes are particularly enriched for genes responsible for amino acid, siderophore, and terpenoid biosynthesis while dicot-cutter ant fungus gardens metagenomes are enriched in genes involved in membrane transport. These differences in bacterial community composition and functional capacity show that different substrate inputs matter for fungus garden bacteria, and sheds light on the potential role of bacteria in mediating the ants’ transition to the use of a novel substrate.


mSystems ◽  
2021 ◽  
Author(s):  
Andrés Mauricio Caraballo-Rodríguez ◽  
Sara P. Puckett ◽  
Kathleen E. Kyle ◽  
Daniel Petras ◽  
Ricardo da Silva ◽  
...  

The study of complex ecosystems requires an understanding of the chemical processes involving molecules from several sources. Some of the molecules present in fungus-growing ants’ symbiotic system originate from plants.


1976 ◽  
Vol 66 (2) ◽  
pp. 205-217 ◽  
Author(s):  
M. Littledyke ◽  
J. M. Cherrett

AbstractIngestion of radiolabelled plant juices from cut surfaces of leaves during foraging and during substrate preparation for the fungus garden was demonstrated for laboratory colonies of the leaf-cutting ants Atta cephalotes (L.) and Acromyrmex octospinosus (Reich). Using P32 isotope, up to one-third of the radioactivity in the leaves was taken in directly by the colony as a whole, but this was much less when C14 was used. Additional plant material was taken in by the ants via the fungus garden. Large numbers of ants spend time in investigating cut surfaces of leaves and also in cutting and crimping leaves. Ingestion of plant material during these processes could play an important nutritional role in the colony and this may explain why many ants return from foraging apparently unladen. Large ants obtained most of their plant juice intake during foraging and the medium and small ants took much of theirs during substrate preparation. Inhibitory chemicals did not affect cutting but they reduced drinking and also reduced the intake of P32 from leaves during substrate preparation. The ants also ingested different amounts of P32 from leaves of different acceptability. It is suggested that leaf-cutting ants use fungus culture as a means of ‘sidestepping’ plant inhibitors. Nutrients are ingested directly from leaves when these are palatable, and the less palatable components are made available to the ants via the fungus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Débora Mello Furtado de Mendonça ◽  
Marcela Cristina Silva Caixeta ◽  
Gabriel Leite Martins ◽  
Camila Costa Moreira ◽  
Thiago Gechel Kloss ◽  
...  

Eusocial insects interact with a diversity of parasites that can threaten their survival and reproduction. The amount of harm these parasites cause to their hosts (i.e., their virulence) can be influenced by numerous factors, such as the ecological context in which the parasite and its host are inserted. Leaf-cutting ants (genera Atta, Acromyrmex and Amoimyrmex, Attini: Formicidae) are an example of a eusocial insect whose colonies are constantly threatened by parasites. The fungi Escovopsis and Escovopsioides (Ascomycota: Hypocreales) are considered a highly virulent parasite and an antagonist, respectively, to the leaf-cutting ants’ fungal cultivar, Leucoagaricus gongylophorus (Basidiomycota: Agaricales). Since Escovopsis and Escovopsioides are common inhabitants of healthy colonies that can live for years, we expect them to have low levels of virulence. However, this virulence could vary depending on ecological context. We therefore tested two hypotheses: (i) Escovopsis and Escovopsioides are of low virulence to colonies; (ii) virulence increases as colony complexity decreases. For this, we used three levels of complexity: queenright colonies (fungus garden with queen and workers), queenless colonies (fungus garden and workers, without queen) and fungus gardens (without any ants). Each was inoculated with extremely high concentrations of conidia of Escovopsis moelleri, Escovopsioides nivea, the mycoparasitic fungus Trichoderma longibrachiatum or a blank control. We found that these fungi were of low virulence to queenright colonies. The survival of queenless colonies was decreased by E. moelleri and fungus gardens were suppressed by all treatments. Moreover, E. nivea and T. longibrachiatum seemed to be less aggressive than E. moelleri, observed both in vivo and in vitro. The results highlight the importance of each element (queen, workers and fungus garden) in the leaf-cutting ant-fungus symbiosis. Most importantly, we showed that Escovopsis may not be virulent to healthy colonies, despite commonly being described as such, with the reported virulence of Escovopsis being due to poor colony conditions in the field or in laboratory experiments.


2018 ◽  
Vol 11 (2) ◽  
pp. 107-112
Author(s):  
Amanda Aparecida Carlos ◽  
Eduardo Arrivabene Diniz ◽  
Sandra Verza Da Silva ◽  
Odair Correa Bueno

Abstract. The communication between leaf-cutting ants occurs through chemical interactions and sound, which are important processes in the complex social system of these organisms. Studies have focused on the characterization and importance of stridulation and vibration of the substrate for ants in general. However, for leaf-cutting ant species, little information is available about the characterization and the function of vibration of the substrate during preparation and incorporation of plant material into the symbiotic fungus by workers. Therefore, the objective of the present study was to describe the vibration in Eucalyptus leaves generated by the stridulation of Atta laevigata (Smith) workers during processing and incorporation of the plant material into the symbiotic fungus, and to discuss its possible function. Vibrational signals were recorded with a laser vibrometer. The amplitudes of the emitted signals varied according to the behaviors performed, that is, each behavior showed a characteristic amplitude. Thus, the vibration in the leaves probably can aid in the efficiency of these ants during the processing of the vegetal material for the incorporation in its symbiont.Vibração do substrato vegetal gerada pela estridulação de operárias durante o cultivo do fungo em Atta laevigata (Smith) (Hymenoptera: Formicidae)Resumo. A comunicação entre as formigas cortadeiras ocorre por meio da interação química e do som, processos importantes no complexo sistema social destes organismos. Existem vários estudos enfocando a caraterização e a importância da estridulação e vibração do substrato para as formigas em geral. Contudo, pouco se tem descrito para as espécies de formigas cortadeiras sobre a caracterização e função da vibração do substrato durante o preparo e a incorporação do material vegetal pelas operárias no fungo simbionte. Assim, o presente trabalho descreveu a vibração nas folhas de Eucalyptus sp. gerada pela estridulação das operárias de Atta laevigata (Smith) durante o processamento e incorporação destas folhas no fungo simbionte, além de interpretar sua possível função. Os sinais vibratórios foram gravados com um vibrômetro a laser. As amplitudes dos sinais emitidos variaram conforme os comportamentos executados, ou seja, cada comportamento apresentou uma amplitude característica. Desse modo, a vibração nas folhas provavelmente pode auxiliar na eficiência dessas formigas durante o processamento do material vegetal para a incorporação no seu simbionte.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244586
Author(s):  
Janine N. Caira ◽  
Kirsten Jensen

Nutritionally-based mutualisms with bacteria are known to occur in a wide array of invertebrate phyla, although less commonly in the Platyhelminthes. Here we report what appears to be a novel example of this type of association in two geographically disparate and phylogenetically distant species of tapeworms of eagle rays—the lecanicephalidean Elicilacunosus dharmadii off the island of Borneo and the tetraphyllidean Caulobothrium multispelaeum off Senegal. Scanning and transmission electron microscopy revealed that the grooves and apertures on the outer surfaces of both tapeworms open into expansive cavities housing concentrations of bacteria. This led us to reject the original hypothesis that these structures, and their associated mucopolysaccharides, aid in attachment to the host mucosa. The cavities were found to be specialized in-foldings of the tapeworm body that were lined with particularly elongate filitriches. Given tapeworms lack a gut and employ filitriches to assist in nutrient absorption, enhanced nutrient uptake likely occurs in the cavities. Each tapeworm species appeared to host different bacterial monocultures; those in E. dharmadii were coccoid-like in form, while those in C. multispelaeum were bacillus-like. The presence of bacteria in a specialized structure of this nature suggests the structure is a symbiotic organ. Tapeworms are fully capable of obtaining their own nutrients, and thus the bacteria likely serve merely to supplement their diet. Given the bacteria were also extracellular, this structure is more consistent with a mycetome than a trophosome. To our knowledge, this is not only the first evidence of an external symbiotic organ of any type in a nutritionally-based mutualism, but also the first description of a mycetome in a group of invertebrates that lacks a digestive system. The factors that might account for the independent evolution of this unique association in these unrelated tapeworms are unclear—especially given that none of their closest relatives exhibit any evidence of the phenomenon.


2015 ◽  
Vol 81 (13) ◽  
pp. 4525-4535 ◽  
Author(s):  
Alexandre F. Somera ◽  
Adriel M. Lima ◽  
Álvaro J. dos Santos-Neto ◽  
Fernando M. Lanças ◽  
Maurício Bacci

ABSTRACTLeaf-cutter ants use plant matter to culture the obligate mutualistic basidiomyceteLeucoagaricusgongylophorus. This fungus mediates ant nutrition on plant resources. Furthermore, other microbes living in the fungus garden might also contribute to plant digestion. The fungus garden comprises a young sector with recently incorporated leaf fragments and an old sector with partially digested plant matter. Here, we show that the young and old sectors of the grass-cutterAttabisphaericafungus garden operate as a biphasic solid-state mixed fermenting system. An initial plant digestion phase occurred in the young sector in the fungus garden periphery, with prevailing hemicellulose and starch degradation into arabinose, mannose, xylose, and glucose. These products support fast microbial growth but were mostly converted into four polyols. Three polyols, mannitol, arabitol, and inositol, were secreted byL.gongylophorus, and a fourth polyol, sorbitol, was likely secreted by another, unidentified, microbe. A second plant digestion phase occurred in the old sector, located in the fungus garden core, comprising stocks of microbial biomass growing slowly on monosaccharides and polyols. This biphasic operation was efficient in mediating symbiotic nutrition on plant matter: the microbes, accounting for 4% of the fungus garden biomass, converted plant matter biomass into monosaccharides and polyols, which were completely consumed by the resident ants and microbes. However, when consumption was inhibited through laboratory manipulation, most of the plant polysaccharides were degraded, products rapidly accumulated, and yields could be preferentially switched between polyols and monosaccharides. This feature might be useful in biotechnology.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ayesha Ali ◽  
HuiYing Tan ◽  
Gerard E. Kaiko

The intestinal epithelial tract forms a dynamic lining of the digestive system consisting of a range of epithelial cell sub-types with diverse functions fulfilling specific niches. The intestinal epithelium is more than just a physical barrier regulating nutrient uptake, rather it plays a critical role in homeostasis through its intrinsic innate immune function, pivotal regulation of antigen sensitization, and a bi-directional interplay with the microbiota that evolves with age. In this review we will discuss these functions of the epithelium in the context of food allergy.


Sign in / Sign up

Export Citation Format

Share Document