scholarly journals Role of the Intestinal Epithelium and Its Interaction With the Microbiota in Food Allergy

2020 ◽  
Vol 11 ◽  
Author(s):  
Ayesha Ali ◽  
HuiYing Tan ◽  
Gerard E. Kaiko

The intestinal epithelial tract forms a dynamic lining of the digestive system consisting of a range of epithelial cell sub-types with diverse functions fulfilling specific niches. The intestinal epithelium is more than just a physical barrier regulating nutrient uptake, rather it plays a critical role in homeostasis through its intrinsic innate immune function, pivotal regulation of antigen sensitization, and a bi-directional interplay with the microbiota that evolves with age. In this review we will discuss these functions of the epithelium in the context of food allergy.

2020 ◽  
Vol 11 ◽  
Author(s):  
Kelly Bruton ◽  
Joshua F. E. Koenig ◽  
Allyssa Phelps ◽  
Manel Jordana

While type 2 immunity has been conventionally viewed as beneficial against helminths, venoms, and poisons, and harmful in allergy, contemporary research has uncovered its critical role in the maintenance of homeostasis. The initiation of a type 2 immune response involves an intricate crosstalk between structural and immune cells. Structural cells react to physical and chemical tissue perturbations by secreting alarmins, which signal the innate immune system to restore homeostasis. This pathway acts autonomously in the context of sterile injury and in the presence of foreign antigen initiates an adaptive Th2 response that is beneficial in the context of venoms, toxins, and helminths, but not food allergens. The investigation of the triggers and mechanisms underlying food allergic sensitization in humans is elusive because sensitization is a silent process. Therefore, the central construct driving food allergy modeling is based on introducing perturbations of tissue homeostasis along with an allergen which will result in an immunological and clinical phenotype that is consistent with that observed in humans. The collective evidence from multiple models has revealed the pre-eminent role of innate cells and molecules in the elicitation of allergic sensitization. We posit that, with the expanding use of technologies capable of producing formidable datasets, models of food allergy will continue to have an indispensable role to delineate mechanisms and establish causal relationships.


2021 ◽  
pp. 1-11
Author(s):  
Yong Yu ◽  
Qiao-Ruo Jin ◽  
Yang Mi ◽  
Jiang-Qi Liu ◽  
Zhi-Qiang Liu ◽  
...  

The mechanism of generation of antigen-specific regulatory T cells (Treg) is not fully understood yet. This study aimed to investigate the role of intestinal epithelial cell (IEC)-derived CD83 in the Treg generation in the intestine. In this study, the role of CD83 in the generation of Tregs was assessed in a cell-culture model and a food allergy (FA) mouse model. We found that mouse IECs expressed CD83; its levels were markedly lower in sensitized mice. Mice with CD83-deficient IECs failed to induce Tregs in the intestine. CD83 promoted the transforming growth factor-β-inducible early gene 1 (TIEG1) expression in CD4<sup>+</sup> T cells. Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex mediated the effects of CD83 on the expression of TIEG1. Activation of the CD83/TLR4/MD-2/TIEG1 promoted the Treg generation. Concomitant administration of CD83 and specific antigens, but not either one alone, efficiently inhibited experimental FA via inducing the Treg generation in the intestine. In Conclusion, IEC expresses CD83 that is low in sensitized mice. Concomitant administration of CD83 and specific antigens efficiently inhibits FA in a murine model via inducing Tregs in the intestine. The data suggest that CD83 has translation potential in the treatment of FA.


2017 ◽  
Vol 312 (2) ◽  
pp. G103-G111 ◽  
Author(s):  
Sabrina Jeppsson ◽  
Shanthi Srinivasan ◽  
Bindu Chandrasekharan

We have demonstrated that neuropeptide Y (NPY), abundantly produced by enteric neurons, is an important regulator of intestinal inflammation. However, the role of NPY in the progression of chronic inflammation to tumorigenesis is unknown. We investigated whether NPY could modulate epithelial cell proliferation and apoptosis, and thus regulate tumorigenesis. Repeated cycles of dextran sodium sulfate (DSS) were used to model inflammation-induced tumorigenesis in wild-type (WT) and NPY knockout ( NPY−/−) mice. Intestinal epithelial cell lines (T84) were used to assess the effects of NPY (0.1 µM) on epithelial proliferation and apoptosis in vitro. DSS-WT mice exhibited enhanced intestinal inflammation, polyp size, and polyp number (7.5 ± 0.8) compared with DSS- NPY−/− mice (4 ± 0.5, P < 0.01). Accordingly, DSS-WT mice also showed increased colonic epithelial proliferation (PCNA, Ki67) and reduced apoptosis (TUNEL) compared with DSS- NPY−/− mice. The apoptosis regulating microRNA, miR-375, was significantly downregulated in the colon of DSS-WT (2-fold, P < 0.01) compared with DSS- NPY−/−-mice. In vitro studies indicated that NPY promotes cell proliferation (increase in PCNA and β-catenin, P < 0.05) via phosphatidyl-inositol-3-kinase (PI3-K)-β-catenin signaling, suppressed miR-375 expression, and reduced apoptosis (increase in phospho-Bad). NPY-treated cells also displayed increased c-Myc and cyclin D1, and reduction in p21 ( P < 0.05). Addition of miR-375 inhibitor to cells already treated with NPY did not further enhance the effects induced by NPY alone. Our findings demonstrate a novel regulation of inflammation-induced tumorigenesis by NPY-epithelial cross talk as mediated by activation of PI3-K signaling and downregulation of miR-375. NEW & NOTEWORTHY Our work exemplifies a novel role of neuropeptide Y (NPY) in regulating inflammation-induced tumorigenesis via two modalities: first by enhanced proliferation (PI3-K/pAkt), and second by downregulation of microRNA-375 (miR-375)-dependent apoptosis in intestinal epithelial cells. Our data establish the existence of a microRNA-mediated cross talk between enteric neurons producing NPY and intestinal epithelial cells, and the potential of neuropeptide-regulated miRNAs as potential therapeutic molecules for the management of inflammation-associated tumors in the gut.


2001 ◽  
Vol 69 (11) ◽  
pp. 6660-6669 ◽  
Author(s):  
Ichiro Tatsuno ◽  
Masanori Horie ◽  
Hiroyuki Abe ◽  
Takeyoshi Miki ◽  
Kozo Makino ◽  
...  

ABSTRACT Adherence of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelium is critical for initiation of a bacterial infection. An in vitro infection study previously indicated that EHEC bacteria initially adhere diffusely and then proliferate to develop MC, a process that is mediated by various secreted proteins, such as EspA, EspB, EspD, Tir, and intimin, as well as other putative adherence factors. In the present study, we investigated the role of a large 93-kb plasmid (pO157) in the adherence of O157:H7 (O157Sakai) and found the toxB gene to be involved in the full adherence phenotype. A pO157-cured strain of O157Sakai (O157Cu) developed microcolonies on Caco-2 cells; however, the number of microcolonies was lower than that of O157Sakai, as were the production and secretion levels of EspA, EspB, and Tir. Introduction of a mini-pO157 plasmid (pIC37) composed of thetoxB and ori regions restored full adherence capacity to O157Cu, including production and secretion of the proteins. In contrast, introduction of a pO157 mutant possessingtoxB::Km into O157Cu could not restore the full adherence phenotype. Expression of truncated versions of His-tagged ToxB also promoted EspB production and/or secretion by O157Cu. These results suggest that ToxB contributes to the adherence of EHEC to epithelial cells through promotion of the production and/or secretion of type III secreted proteins.


2018 ◽  
Vol 19 (12) ◽  
pp. 3810 ◽  
Author(s):  
Ting Lian ◽  
Qi Wu ◽  
Brian Hodge ◽  
Kenneth Wilson ◽  
Guixiang Yu ◽  
...  

Aging is often defined as the accumulation of damage at the molecular and cellular levels which, over time, results in marked physiological impairments throughout the organism. Dietary restriction (DR) has been recognized as one of the strongest lifespan extending therapies observed in a wide array of organisms. Recent studies aimed at elucidating how DR promotes healthy aging have demonstrated a vital role of the digestive tract in mediating the beneficial effects of DR. Here, we review how dietary restriction influences gut metabolic homeostasis and immune function. Our discussion is focused on studies of the Drosophila digestive tract, where we describe in detail the potential mechanisms in which DR enhances maintenance of the intestinal epithelial barrier, up-regulates lipid metabolic processes, and improves the ability of the gut to deal with damage or stress. We also examine evidence of a tissue-tissue crosstalk between gut and neighboring organs including brain and fat body. Taken together, we argue that the Drosophila gut plays a critical role in DR-mediated lifespan extension.


2020 ◽  
Author(s):  
Quentin Marquant ◽  
Daphné Laubreton ◽  
Carole Drajac ◽  
Elliot Mathieu ◽  
Edwige Bouguyon ◽  
...  

AbstractThe microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota can modulate reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific pathogen-free (SPF) and germ-free (GF) mice. Using SPF and GF mice intranasally exposed to lipopolysaccharide (LPS), a component of Gram-negative bacteria, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.Plain Language summaryMicrobiota represents an important partner of immunologic system at the interface between immune cells and epithelium. It is well known, notably in the gut, that the microbiota contributes in shaping efficient and safe defenses. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. In this study, we postulate that endogenous microbiota could dampen an excessive reactivity of pulmonary tissue to external stimuli. Thus, we sought to study the innate immune reaction switched on by viral or bacterial ligands in respiratory tract cells coming from mice with or without microbiota (germ-free condition, GF). Altogether, our results show a higher inflammatory reaction in GF condition. This study represents a step forward to better establish the link between the microbiota and the reactivity of the lung tissue. Not only these data demonstrate that the microbiota educates the pulmonary innate immune system, but also contributes the emerging concept of using respiratory commensal bacteria as potential next-generation probiotics to prevent susceptibility to respiratory diseases.


2008 ◽  
Vol 105 (46) ◽  
pp. 17931-17936 ◽  
Author(s):  
Danyvid Olivares-Villagómez ◽  
Yanice V. Mendez-Fernandez ◽  
Vrajesh V. Parekh ◽  
Saif Lalani ◽  
Tiffaney L. Vincent ◽  
...  

Intestinal intraepithelial lymphocytes (IEL) bear a partially activated phenotype that permits them to rapidly respond to antigenic insults. However, this phenotype also implies that IEL must be highly controlled to prevent misdirected immune reactions. It has been suggested that IEL are regulated through the interaction of the CD8αα homodimer with the thymus leukemia (TL) antigen expressed by intestinal epithelial cells. We have generated and characterized mice genetically-deficient in TL expression. Our findings show that TL expression has a critical role in maintaining IEL effector functions. Also, TL deficiency accelerated colitis in a genetic model of inflammatory bowel disease. These findings reveal an important regulatory role of TL in controlling IEL function and intestinal inflammation.


2005 ◽  
Vol 65 (24) ◽  
pp. 11486-11492 ◽  
Author(s):  
Imad Shureiqi ◽  
Yuanqing Wu ◽  
Dongning Chen ◽  
Xiu L. Yang ◽  
Baoxiang Guan ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenjin Zheng ◽  
Qing Xu ◽  
Yiyuan Zhang ◽  
Xiaofei E ◽  
Wei Gao ◽  
...  

Abstract Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.


Sign in / Sign up

Export Citation Format

Share Document