scholarly journals Adipocyte deletion of the RNA binding protein HuR induces cardiac hypertrophy and fibrosis

2021 ◽  
Author(s):  
Adrienne R. Guarnieri ◽  
Sarah R. Anthony ◽  
Anamarie Gozdiff ◽  
Lisa C. Green ◽  
Sam Slone ◽  
...  

ABSTRACTAdipose tissue continues to gain appreciation for its broad role as an endocrine organ, and disruptions in adipose tissue homeostasis plays a central role in cardiovascular physiology. We have previously shown that expression of the RNA binding protein HuR in adipose tissue mediates energy expenditure, but the potential cardiovascular impacts of this finding have not been explored. We show here that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) is sufficient to induce the spontaneous development of cardiac hypertrophy and fibrosis. Hearts from Adipo-HuR-/- mice have increased left ventricular (LV) ejection fraction, rate of pressure generation, and LV posterior wall thickness that is accompanied by an increase in LV/body weight ratio and hypertrophic gene expression. Furthermore, Adipo-HuR-/- hearts display increased fibrosis by picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene co-expression network analysis (WGCNA) to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and LV mass. RNA-seq results demonstrate a significant increase in pro-inflammatory gene expression in the subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. WGCNA identified a significant enrichment in inflammation, apoptosis/cell death, and vesicle-mediated transport genes among those whose expression most significantly associated with CVD in Adipo-HuR-/-. In conclusion, we demonstrate that the loss of HuR expression in adipose tissue promotes the development of cardiac hypertrophy and fibrosis, potentially through modulation of inflammation and vesicle-mediated transport in scWAT.NEW AND NOTEWORTHYThis work demonstrates the spontaneous development of cardiac hypertrophy and fibrosis upon adipose tissue-specific deletion of the RNA binding protein HuR that appears to be mechanistically driven by HuR-dependent changes in inflammatory and extracellular vesicle transport mediating genes in the subcutaneous white adipose tissue. These results suggest that loss of HuR expression in adipose tissue in obesity, as demonstrated in mouse and humans by our group and others, may contribute to obesity-mediated CVD.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


2018 ◽  
Vol 154 (6) ◽  
pp. S-585
Author(s):  
Sarah F. Andres ◽  
Kathy N. Williams ◽  
Kathryn E. Hamilton ◽  
Rei Mizuno ◽  
Jeff Headd ◽  
...  

2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


2020 ◽  
Vol 32 (18) ◽  
pp. 1357
Author(s):  
Chengcheng Xu ◽  
Dandan Ke ◽  
Liping Zou ◽  
Nianyu Li ◽  
Yingying Wang ◽  
...  

In this study, the ability of cold-induced RNA-binding protein (CIRBP) to regulate the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) in the mouse testis and mouse primary spermatocytes (GC-2spd cell line) before and after heat stress was examined to explore the molecular mechanism by which CIRBP decreases testicular injury. A mouse testicular hyperthermia model, a mouse primary spermatocyte hyperthermia model and a low CIRBP gene-expression cell model were constructed and their relevant parameters were analysed. The mRNA and protein levels of CIRBP and Sam68 were significantly decreased in the 3-h and 12-h testicular heat-stress groups, extracellular signal-regulated kinase 1/2 (ERK1/2) protein expression was not significantly affected but phospho-ERK1/2 protein levels were significantly decreased. GC-2spd cellular heat-stress results showed that the mRNA and protein concentrations of CIRBP and Sam68 were reduced 48h after heat stress. In the low CIRBP gene-expression cell model, CIRBP protein expression was significantly decreased. Sam68 mRNA expression was significantly decreased only at the maximum transfection concentration of 50nM and Sam68 protein expression was not significantly affected. These findings suggest that CIRBP may regulate the expression of Sam68 at the transcriptional level and the expression of phospho-ERK1/2 protein, both of which protect against heat-stress-induced testicular injury in mice.


Sign in / Sign up

Export Citation Format

Share Document