scholarly journals Performance of RT-PCR on saliva specimens compared to nasopharyngeal swabs for the detection of SARS-CoV-2 in children: A prospective comparative clinical trial

Author(s):  
Yves Fougere ◽  
Jean Marc Schwob ◽  
Alix Miauton ◽  
Francesca Hoegger ◽  
Onya Opota ◽  
...  

Background: Saliva RT-PCR is an attractive alternative for the detection of SARS-CoV-2 in adults with much less known in children. Methods: Children and adolescents with symptoms suggestive of COVID-19 were prospectively enrolled in a comparative clinical trial of saliva and nasopharyngeal (NP) RT-PCR between November and December 2020. Detection rates and sensitivities of saliva and NP RT-PCR were compared. Participants with discordant NP and saliva RT-PCR results including viral load (VL) were also analyzed. Result: Out of 405 patients enrolled, 397 patients had two tests performed. Mean age was 12.7 years (range 1.2-17.9). Detection rates were 22.9% (95%CI 18.8-27.1%) by saliva RT-PCR, 25.4% (21.2-29.7%) by NP RT-PCR, and 26.7% (22.4-31.1%) by any test. The sensitivity of saliva was 85.2% (78.2-92.1%) when using NP as the gold standard; in contrast, when saliva was considered the gold standard, the sensitivity of NP was 94.5% (89.8-99.2%).For a NP RT-PCR VL threshold of ≥103 and ≥104 copies/ml, sensitivity of saliva increases to 88.7% and 95.2% respectively. Sensitivity of saliva and NP swabs was respectively 89.5% and 95.3% in patient with symptoms less than 4 days (p=0.249) and 70.0% and 95.0% in those with symptoms ≥ 4 to 7 days (p=0.096). The 15 patients who had an isolated positive NP RT-PCR were significantly younger (p=0.034), had a lower NP VL (median 5.6x103 vs 3.9x107, p<0.001), and were not able to drool saliva at the end of the sampling (p=0.002). VLs were significantly lower with saliva PCR than with NP RT-PCR (median 8.7 cp/ml x104; IQR 1.2x104-5.2x105; vs median 4.0x107cp/ml; IQR 8.6x105-1.x108; p<0.001). Conclusion: Saliva PCR shows diagnostic performances close to NP RT-PCR for SARS-CoV2 detection in most symptomatic outpatient children and adolescents.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pauline Byakika-Kibwika ◽  
Christine Sekaggya-Wiltshire ◽  
Jerome Roy Semakula ◽  
Jane Nakibuuka ◽  
Joseph Musaazi ◽  
...  

Abstract Background Several repurposed drugs such as hydroxychloroquine (HCQ) have been investigated for treatment of COVID-19, but none was confirmed to be efficacious. While in vitro studies have demonstrated antiviral properties of HCQ, data from clinical trials were conflicting regarding its benefit for COVID-19 treatment. Drugs that limit viral replication may be beneficial in the earlier course of the disease thus slowing progression to severe and critical illness. Design We conducted a randomized open label Phase II clinical trial from October–December 2020. Methods Patients diagnosed with COVID-19 using RT-PCR were included in the study if they were 18 years and above and had a diagnosis of COVID-19 made in the last 3 days. Patients were randomized in blocks, to receive either HCQ 400 mg twice a day for the first day followed by 200 mg twice daily for the next 4 days plus standard of care (SOC) treatment or SOC treatment alone. SARS COV-2 viral load (CT values) from RT-PCR testing of samples collected using nasal/orapharyngeal swabs was performed at baseline, day 2, 4, 6, 8 and 10. The primary outcome was median time from randomization to SARS COV-2 viral clearance by day 6. Results Of the 105 participants enrolled, 55 were assigned to the intervention group (HCQ plus SOC) and 50 to the control group (SOC only). Baseline characteristics were similar across treatment arms. Viral clearance did not differ by treatment arm, 20 and 19 participants respectively had SARS COV-2 viral load clearance by day 6 with no significant difference, median (IQR) number of days to viral load clearance between the two groups was 4(3–4) vs 4(2–4): p = 0.457. There were no significant differences in secondary outcomes (symptom resolution and adverse events) between the intervention group and the control group. There were no significant differences in specific adverse events such as elevated alkaline phosphatase, prolonged QTc interval on ECG, among patients in the intervention group as compared to the control group. Conclusion Our results show that HCQ 400 mg twice a day for the first day followed by 200 mg twice daily for the next 4 days was safe but not associated with reduction in viral clearance or symptom resolution among adults with COVID-19 in Uganda. Trial registration: NCT04860284.


Author(s):  
Ozlem Akgun Dogan ◽  
Betsi Kose ◽  
Nihat Bugra Agaoglu ◽  
Jale Yildiz ◽  
Gizem Alkurt ◽  
...  

The gold standard method in the diagnosis of SARS-CoV-2 infection is the detection of viral RNA in nasopharyngeal sample by RT-PCR. Recently, saliva samples has been suggested as an alternative due to being fast, reliable and non-invasive, rather than nasopharyngeal samples. We compared RT-PCR results in nasopharyngeal, oro-nasopharyngeal and saliva samples of COVID-19 patients. 98 of 200 patients were positive in RT-PCR analysis performed before the hospitalization. In day 0, at least one sample was positive in 67% of 98 patients. Positivity rate was 83% for both oro-nasopharyngeal and nasopharyngeal samples, while it was 63% for saliva samples (p<0.001). On day 5, RT-PCR was performed in 59 patients, 34% had at least one positive result. The positivity rate was 55% for saliva and nasopharyngeal samples, while it was 60% for oro-nasopharyngeal samples. Our study shows that the sampling saliva does not increase the sensitivity of RT-PCR tests at early stages of infection. However, on 5th day, viral RNA detection rates in saliva were similar to nasopharyngeal and oro-nasopharyngeal samples. In conclusion, we suggest that, in patients receiving treatment, virus presence in saliva, in addition to the standard samples, is important to determine the isolation period and to control the transmission.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1091
Author(s):  
Ali A. Rabaan ◽  
Raghavendra Tirupathi ◽  
Anupam A Sule ◽  
Jehad Aldali ◽  
Abbas Al Mutair ◽  
...  

Real-time RT-PCR is considered the gold standard confirmatory test for coronavirus disease 2019 (COVID-19). However, many scientists disagree, and it is essential to understand that several factors and variables can cause a false-negative test. In this context, cycle threshold (Ct) values are being utilized to diagnose or predict SARS-CoV-2 infection. This practice has a significant clinical utility as Ct values can be correlated with the viral load. In addition, Ct values have a strong correlation with multiple haematological and biochemical markers. However, it is essential to consider that Ct values might be affected by pre-analytic, analytic, and post-analytical variables such as collection technique, specimen type, sampling time, viral kinetics, transport and storage conditions, nucleic acid extraction, viral RNA load, primer designing, real-time PCR efficiency, and Ct value determination method. Therefore, understanding the interpretation of Ct values and other influential factors could play a crucial role in interpreting viral load and disease severity. In several clinical studies consisting of small or large sample sizes, several discrepancies exist regarding a significant positive correlation between the Ct value and disease severity in COVID-19. In this context, a revised review of the literature has been conducted to fill the knowledge gaps regarding the correlations between Ct values and severity/fatality rates of patients with COVID-19. Various databases such as PubMed, Science Direct, Medline, Scopus, and Google Scholar were searched up to April 2021 by using keywords including “RT-PCR or viral load”, “SARS-CoV-2 and RT-PCR”, “Ct value and viral load”, “Ct value or COVID-19”. Research articles were extracted and selected independently by the authors and included in the present review based on their relevance to the study. The current narrative review explores the correlation of Ct values with mortality, disease progression, severity, and infectivity. We also discuss the factors that can affect these values, such as collection technique, type of swab, sampling method, etc.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 895
Author(s):  
Florence Carrouel ◽  
Martine Valette ◽  
Hervé Perrier ◽  
Maude Bouscambert-Duchamp ◽  
Claude Dussart ◽  
...  

The aim of this study was to determine whether self-collected pure saliva (SCPS) is comparable to nasopharyngeal (NP) swabs in the quantitative detection of SARS-CoV-2 by RT-PCR in asymptomatic, mild patients with confirmed COVID-19. Thirty-one patients aged from 18 to 85 years were included between 9 June and 11 December 2020. A SCPS sample and a NP sample were taken for each patient. Quantitative PCR was performed to detect SARS-CoV-2 viral load. Results of SCPS vs NP samples testing were compared. Statistical analyses were performed. Viral load was significantly correlated (r = 0.72). The concordance probability was estimated at 73.3%. In symptomatic adults, SCPS performance was similar to that of NP swabs (Percent Agreement = 74.1%; p = 0.11). Thus, the salivary test based on pure oral saliva samples easily obtained by noninvasive techniques has a fair agreement with the nasopharyngeal one in asymptomatic, mild patients with a confirmed diagnosis of COVID-19.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Umar Saeed ◽  
Sara Rizwan Uppal ◽  
Zahra Zahid Piracha ◽  
Azhar Rasheed ◽  
Zubair Aftab ◽  
...  

AbstractRapid diagnosis of SARS-CoV-2 during pandemic enables timely treatment and prevention of COVID-19. Evaluating the accuracy and reliability of rapid diagnostic testing kits is crucial for surveillance and diagnosis of SARS-CoV-2 infections in general population, injection drug users, multi-transfused populations, healthcare workers, prisoners, barbers and other high risk populations. The aim of this study was to evaluate performance and effectiveness of nasopharyngeal swab (NSP) and saliva based rapid antigen detection testing kits in comparison with USFDA approved triple target gold standard real-time polymerase chain reaction. A cross-sectional study was conducted on 33,000 COVID-19 suspected patients. From RT-PCR positive patients, nasopharyngeal swab (NSP) and saliva samples were obtained for evaluation of rapid COVID-19 testing kits (RDT). 100/33,000 (0.3%) of specimens were RT-PCR positive for SARS-CoV-2. Among RT-PCR positive, 62% were males, 34% were females, and 4% were children. The NSP-RDT (Lepu Medical China) analysis revealed 53% reactivity among males, 58% reactivity among females, and 25% reactivity among children. However saliva based RDT (Lepu Medical China) analysis showed 21% reactivity among males and 23% among females, and no reactivity in children. False negative results were significantly more pronounced in saliva based RDT as compared to NSP-RDT. The sensitivity of these NSP-RDT and saliva based RDT were 52% and 21% respectively. The RDTs evaluated in this study showed limited sensitivities in comparison to gold standard RT-PCR, indicating that there is a dire need in Pakistan for development of suitable testing to improve accurate COVID-19 diagnosis in line with national demands.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 730
Author(s):  
Magda Rybicka ◽  
Ewa Miłosz ◽  
Krzysztof Piotr Bielawski

At present, the RT-PCR test remains the gold standard for early diagnosis of SARS-CoV-2. Nevertheless, there is growing evidence demonstrating that this technique may generate false-negative results. Here, we aimed to compare the new mass spectrometry-based assay MassARRAY® SARS-CoV-2 Panel with the RT-PCR diagnostic test approved for clinical use. The study group consisted of 168 suspected patients with symptoms of a respiratory infection. After simultaneous analysis by RT-PCR and mass spectrometry methods, we obtained discordant results for 17 samples (10.12%). Within fifteen samples officially reported as presumptive positive, 13 were positive according to the MS-based assay. Moreover, four samples reported by the officially approved RT-PCR as negative were positive in at least one MS assay. We have successfully demonstrated superior sensitivity of the MS-based assay in SARS-CoV-2 detection, showing that MALDI-TOF MS seems to be ideal for the detection as well as discrimination of mutations within the viral genome.


Sign in / Sign up

Export Citation Format

Share Document