scholarly journals Atorvastatin effectively inhibits late replicative cycle steps of SARS-CoV-2 in vitro

2021 ◽  
Author(s):  
María I. Zapata-Cardona ◽  
Lizdany Flórez-Álvarez ◽  
Wildeman Zapata-Builes ◽  
Ariadna L. Guerra-Sandoval ◽  
Carlos M. Guerra-Almonacid ◽  
...  

AbstractIntroductionSARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has caused a pandemic of historic proportions and continues to spread worldwide. Currently, there is no effective therapy against this virus. This article evaluated the in vitro antiviral effect of Atorvastatin against SARS-CoV-2 and also identified the interaction affinity between Atorvastatin and three SARS-CoV-2 proteins, using in silico structure-based molecular docking approach.Materials and methodsThe antiviral activity of Atorvastatin against SARS-CoV-2 was evaluated by three different treatment strategies using a clinical isolate of SARS-CoV-2. The interaction of Atorvastatin with Spike, RNA-dependent RNA polymerase (RdRp) and 3C-like protease (3CLpro) was evaluated by molecular docking.ResultsAtorvastatin showed anti-SARS-CoV-2 activity of 79%, 54.8%, 22.6% and 25% at 31.2, 15.6, 7.9, and 3.9 µM, respectively, by pre-post-treatment strategy. In addition, atorvastatin demonstrated an antiviral effect of 26.9% at 31.2 µM by pre-infection treatment. This compound also inhibited SARS-CoV-2 in 66.9%, 75%, 27.9% and 29.2% at concentrations of 31.2, 15.6, 7.9, and 3.9 µM, respectively, by post-infection treatment. The interaction of atorvastatin with SARS-CoV-2 Spike, RdRp and 3CL protease yielded a binding affinity of −8.5 Kcal/mol, −6.2 Kcal/mol, and −7.5 Kcal/mol, respectively.ConclusionOur study demonstrated the in vitro anti-SARS-CoV-2 activity of Atorvastatin, mainly against the late steps of the viral replicative cycle. A favorable binding affinity with viral proteins by bioinformatics methods was also shown. Due to its low cost, availability, well-established safety and tolerability, and the extensive clinical experience of atorvastatin, it could prove valuable in reducing morbidity and mortality from COVID-19.ImportanceThe COVID-19 pandemic constitutes the largest global public health crisis in a century, with enormous health and socioeconomic challenges. Therefore, it is necessary to search for specific antivirals against its causative agent (SARS-CoV-2). In this sense, the use of existing drugs may represent a useful treatment option in terms of safety, cost-effectiveness, and timeliness. Atorvastatin is widely used to prevent cardiovascular events. This compound modulates the synthesis of cholesterol, a molecule necessary in different stages of the viral replicative cycle. Our study demonstrated the antiviral potential of atorvastatin against SARS-CoV-2, using an in vitro model. Furthermore, the ability of Atorvastatin to directly interfere with three viral targets (Spike, RdRp and 3CL protease) was demonstrated by bioinformatic methods. This compound is a well-studied, low-cost, and generally well-tolerated drug, so it could be a promising antiviral for the treatment of COVID-19.

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 415
Author(s):  
Ashley N. Brown ◽  
Gary Strobel ◽  
Kaley C. Hanrahan ◽  
Joe Sears

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019 (COVID-19), has become a severe threat to global public health. There are currently no antiviral therapies approved for the treatment or prevention of mild to moderate COVID-19 as remdesivir is only approved for severe COVID-19 cases. Here, we evaluated the antiviral potential of a Propylamylatin formula, which is a mixture of propionic acid and isoamyl hexanoates. The Propylamylatin formula was investigated in gaseous and liquid phases against 1 mL viral suspensions containing 105 PFU of SARS-CoV-2. Viral suspensions were sampled at various times post-exposure and infectious virus was quantified by plaque assay on Vero E6 cells. Propylamylatin formula vapors were effective at inactivating infectious SARS-CoV-2 to undetectable levels at room temperature and body temperature, but the decline in virus was substantially faster at the higher temperature (15 min versus 24 h). The direct injection of liquid Propylamylatin formula into viral suspensions also completely inactivated SARS-CoV-2 and the rapidity of inactivation occurred in an exposure dependent manner. The overall volume that resulted in 90% viral inactivation over the course of the direct injection experiment (EC90) was 4.28 µls. Further investigation revealed that the majority of the antiviral effect was attributed to the propionic acid which yielded an overall EC90 value of 11.50 µls whereas the isoamyl hexanoates provided at most a 10-fold reduction in infectious virus. The combination of propionic acid and isoamyl hexanoates was much more potent than the individual components alone, suggesting synergy between these components. These findings illustrate the therapeutic promise of the Propylamylatin formula as a potential treatment strategy for COVID-19 and future studies are warranted.


Author(s):  
Haiming Zhou ◽  
Jing Zhang ◽  
Xiaoqing Chen ◽  
Shili Guo ◽  
Huimei Lin ◽  
...  

Background and Objective: Beauvericin (BEA), a cyclic hexadepsipeptide mycotoxin, is a potent inhibitor of the acyl-CoA: cholesterol acyltransferase enzyme 1 (ACAT1) which involved in multiple tumor-correlated pathways. However, the binding mechanisms between BEA and ACAT1 were not elucidated. Methods: BEA was purified from a mangrove entophytic Fusarium sp. KL11. Single-crystal X-ray diffraction was used to determine the structure of BEA. Wound healing assays of BEA against KB cell line and MDA-MB-231 cell line were evaluated. Inhibitory potency of BEA against ACAT1 was determined by ELISA assays. Molecular docking was carried out to illuminate the bonding mechanism between BEA and ACAT1. Results: The structure of BEA was confirmed by X-ray diffraction, indicating a monoclinic crystal system with P21 space group (α = 90°, β = 92.2216(9)o, γ= 90o). BEA displayed migration-inhibitory activities against KB cells and MDA-MB-231 cells in vitro. ELISA assays revealed the protein expression level of ACAT1 in KB cells was significantly decreased after BEA treatment (P <0.05). Molecular docking demonstrated that BEA formed hydrogen bond with His425 and pi-pi staking with Tyr429 in ACAT1. Conclusions: BEA sufficiently inhibited the proliferation and migration of KB cells and MDA-MB-231 cells by downregulating ACAT1 expression. In addition, BEA potentially possessed a strong binding affinity with ACAT1. BEA may serve as a potential lead compound for the development of a new ACAT1-targeted anticancer drug.


2018 ◽  
Vol 10 (5) ◽  
pp. 117
Author(s):  
Savita Mishra ◽  
Sandhya Hora ◽  
Vibha Shukla ◽  
Mukul Das ◽  
Harsha Kharkwal ◽  
...  

Objective: The aim of this study was to develop polymer coated sustained release tablet using sorafenib and silibinin combination for the treatment of hepatocellular carcinoma.Methods: The qualitative analysis such as weight variation, friability, hardness, interaction studies, disintegration and in vitro release were performed to validate formulated tablets. We have maintained the acceptable official limits for weight variation, friability, hardness and disintegration time according to prescribed pharmacopoeial recommendation. In vitro drug release studies were performed using USP-II (paddle type) dissolution apparatus. The MTT assay was performed for assessment of Cell viability of drug combination for tablet formulation. Molecular docking studies have been performed to determine the combinatorial mode of action for the tablet formulation.Results: Friability and weight variation were less than 1% for each formulation, which were within range of prescribed pharmacopoeial recommendation. The hardness of 20 tablets showed 5-6.5Kg/cm2 for all formulations 5-6.5Kg/cm2. The optimized formulation resulted in 98% drug release after 28 h. The present study reports the synergistic effects of drug combination to inhibit cell growth in HepG2 cell line. Molecular docking studies showed that sorafenib has high binding affinity for B-Raf vascular endothelial growth factor receptor β and protein kinase B. Silibinin showed binding affinity with MAP kinase-11, protein phosphatase 2 A and tankyrase.Conclusion: The present study reports for the first time a novel formulation for sustained release and reduced toxicity of sorafenib with enhanced inhibitory effect of the drug combination on cancerous hepatic cell line as well collaborative mechanism of action for the formulation.


2020 ◽  
Vol 11 (2) ◽  
pp. 120-132
Author(s):  
Javeed Ahmad War ◽  
Santosh Kumar Srivastava

A new series of imidazole linked thiazolidinone hybrid molecules was designed and subsequently synthesized through a feasible, three step reaction protocol. The structures of these molecules were established using FT-IR, 1H NMR, 13C NMR and HRMS techniques. In vitro susceptibility tests against some Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) exhibited broad spectrum potency of the molecules. The most potent molecule (S2A7) amongst the screened molecules, showed minimum inhibitory concentration (MIC) value not less than 2.0 µg/mL which was at par with the reference drug Streptomycin. Structure activity relationships revealed nitro and chloro groups being crucial for bioactivity when present at meta position of arylidene ring in 3-(3-(imidazol-1-yl)propyl)-5-(benzylidene)-2-(phenylimino)thiazolidin-4-one. Deoxyribonucleic acid (DNA)and bovine serum albumin (BSA) binding studies for S2A7 under simulated physiological pH were probed using UV-Visible, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that S2A7 has strong binding affinity towards DNA and binds at the minor groove of DNA with binding constant (Kb) of 0.1287×102 L/mol. Molecular docking simulations of S2A7 with DNA and BSA predicted binding affinity of -9.2 and -7.2 kcal/mol, respectively. Van der Waals forces and hydrogen bonding interactions were predicted as the main forces of interaction. With DNA, S2A7 exhibited specific binding affinity towards adenine-thiamine base pairs. The compound S2A7 forms a stable complex with BSA by binding at subdomain IIIA implying high bio-distribution of the compound.


2021 ◽  
pp. 122-137
Author(s):  
Chingju Lin ◽  
Fuu-Jen Tsai ◽  
Yuan-Man Hsu ◽  
Tsung-Jung Ho ◽  
Guo-Kai Wang ◽  
...  

Negative impacts of COVID-19 on human health and economic and social activities urge scientists to develop effective treatments. Baicalin is a natural flavonoid, extracted from a traditional medicinal plant, previously reported with anti-inflammatory activity. In this study, we used pharmacophore fitting and molecular docking to screen and determine docking patterns and the binding affinity of baicalin on 3 major targets of SARS-CoV-2 (3-chymotrypsin-like cysteine protease [3CLpro], papain-like protease [PLpro], and RNA-dependent RNA polymerase). The obtained data revealed that baicalin has high pharmacophore fitting on 3CLpro and predicted good binding affinity on PLpro. Moreover, using the enzymatic assay, we examined the inhibitory effect of baicalin in vitro on the screened enzymes. Baicalin also exhibits inhibitory effect on these proteases in vitro. Additionally, we performed pharmacophore-based screening of baicalin on human targets and conducted pathway analysis to explore the potential cytoprotective effects of baicalin in the host cell that may be beneficial for COVID-19 treatment. The result suggested that baicalin has multiple targets in human cell that may induce multiple pharmacological effects. The result of pathway analysis implied that these targets may be associated with baicalin-induced bioactivities that are involved with signals of pro-inflammation factors, such as cytokine and chemokine. Taken together with supportive data from the literature, the bioactivities of bailalin may be beneficial for COVID-19 treatment by reducing cytokine-induced acute inflammation. In conclusion, baicalin is potentially a good candidate for developing new therapeutic to treat COVID-19.


Author(s):  
Aldina Amalia Nur Shadrina ◽  
Yetty Herdiyati ◽  
Ika Wiani ◽  
Mieke Hemiawati Satari ◽  
Dikdik Kurnia

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. Objective: The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


2020 ◽  
Vol 3 (4) ◽  
pp. 989-1000
Author(s):  
Mustapha Abdullahi ◽  
Shola Elijah Adeniji

AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.


2021 ◽  
Author(s):  
Chamandi S. Dampalla ◽  
Jian Zhang ◽  
Krishani Dinali Perera ◽  
Lok-Yin Roy Wong ◽  
David K. Meyerholz ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and was proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 hr post infection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


2020 ◽  
Author(s):  
Safaet Alam ◽  
Nazim Uddin Emon ◽  
Mohammad A. Rashid ◽  
Mohammad Arman ◽  
Mohammad Rashedul Haque

AbstractBackgroundColocasia gigantea is locally named as kochu and also better known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial, and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea.MethodsAntidiarrheal investigation was performed by using in vivo castor oil induced diarrheal method where as in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites were appraised with Schrödinger-Maestro v 11.1.ResultsThe induction of plant extract (200 and 400 mg/kg, b.w, p.o), the castor oil mediated diarrhea has been minimized 19.05 % (p < 0.05) and 42.86 % (p < 0.001) respectively. The methanolic extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and furthermore yielded 67.68 μg/mL of IC50 value in the DPPH test. The higher and lower binding affinity was shown in beta-amyrin and monoglyceryl stearic acid against the kappa-opioid receptor (PDB ID: 4DJH) with a docking score of -3.28 kcal/mol and -6.64 kcal/mol respectively. In the antimicrobial investigation, Penduletin and Beta-Amyrin showed the highest and lowest binding affinity against the selected receptors with the docking score of -8.27 kcal/mol and -1.66 kcal/mol respectively.ConclusionThe results of our scientific research reflect that the methanol soluble extract of C. gigantea is safe which may provide possibilities of alleviation of diarrhea and as a potential wellspring of antioxidants which can be considered as an alternate source for exploration of new medicinal products.


Author(s):  
Yumei Luo ◽  
Mimi Zhang ◽  
Yapei Chen ◽  
Yaoyong Chen ◽  
Detu Zhu

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread has caused the coronavirus disease 2019 (COVID-19) pandemics, which is a global public health crisis. Thus, there is an urgent need to establish biological models to study the pathology of SARS-CoV-2 infection, which not only involves respiratory failure, but also includes dysregulation of other organs and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes, and so on. Cellular and organoid models derived from human induced pluripotent stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug screening to prevent the reemergence of coronavirus. These iPSC-derived models could recapitulate the functions and physiology of various human cell types and assemble the complex microenvironments similar with those in the human organs; therefore, they can improve the study efficiency of viral infection mechanisms, mimic the natural host-virus interaction, and be suited for long-term experiments. In this review, we focus on the application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.


Sign in / Sign up

Export Citation Format

Share Document