scholarly journals Neural Basis of the Delayed Gratification

2021 ◽  
Author(s):  
Zilong Gao ◽  
Hanqing Wang ◽  
Chen Lu ◽  
Sean Froudist-Walsh ◽  
Ming Chen ◽  
...  

AbstractBalancing instant gratification versus delayed, but better gratification is important for optimizing survival and reproductive success. Although psychologists and neuroscientists have long attempted to study delayed gratification through human psychological and brain activity monitoring, and animal research, little is known about its neural basis. We successfully trained mice to perform a waiting-and-water-reward delayed gratification task and used these animals in physiological recording and optical manipulation of neuronal activity during the task to explore its neural basis. Our results showed that the activity of DA neurons in ventral tegmental area (VTA) increases steadily during the waiting period. Optical activation vs. silencing of these neurons, respectively, extends or reduces the duration of waiting. To interpret this data, we developed a reinforcement learning (RL) model that reproduces our experimental observations. In this model, steady increases in DAergic activity signal the value of waiting and support the hypothesis that delayed gratification involves real-time deliberation.TEASERSustained ramping dopaminergic activation helps individuals to resist impulsivity and wait for laerger but later return.

2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


2012 ◽  
Vol 24 (9) ◽  
pp. 1867-1883 ◽  
Author(s):  
Bradley R. Buchsbaum ◽  
Sabrina Lemire-Rodger ◽  
Candice Fang ◽  
Hervé Abdi

When we have a rich and vivid memory for a past experience, it often feels like we are transported back in time to witness once again this event. Indeed, a perfect memory would exactly mimic the experiential quality of direct sensory perception. We used fMRI and multivoxel pattern analysis to map and quantify the similarity between patterns of activation evoked by direct perception of a diverse set of short video clips and the vivid remembering, with closed eyes, of these clips. We found that the patterns of distributed brain activation during vivid memory mimicked the patterns evoked during sensory perception. Using whole-brain patterns of activation evoked by perception of the videos, we were able to accurately classify brain patterns that were elicited when participants tried to vividly recall those same videos. A discriminant analysis of the activation patterns associated with each video revealed a high degree (explaining over 80% of the variance) of shared representational similarity between perception and memory. These results show that complex, multifeatured memory involves a partial reinstatement of the whole pattern of brain activity that is evoked during initial perception of the stimulus.


2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Sébastien Laurent ◽  
Laurence Paire-Ficout ◽  
Jean-Michel Boucheix ◽  
Stéphane Argon ◽  
Antonio Hidalgo-Muñoz

The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.


2003 ◽  
Vol 89 (5) ◽  
pp. 2516-2527 ◽  
Author(s):  
Laurent Petit ◽  
Michael S. Beauchamp

We used event-related fMRI to measure brain activity while subjects performed saccadic eye, head, and gaze movements to visually presented targets. Two distinct patterns of response were observed. One set of areas was equally active during eye, head, and gaze movements and consisted of the superior and inferior subdivisions of the frontal eye fields, the supplementary eye field, the intraparietal sulcus, the precuneus, area MT in the lateral occipital sulcus and subcortically in basal ganglia, thalamus, and the superior colliculus. These areas have been previously observed in functional imaging studies of human eye movements, suggesting that a common set of brain areas subserves both oculomotor and head movement control in humans, consistent with data from single-unit recording and microstimulation studies in nonhuman primates that have described overlapping eye- and head-movement representations in oculomotor control areas. A second set of areas was active during head and gaze movements but not during eye movements. This set of areas included the posterior part of the planum temporale and the cortex at the temporoparietal junction, known as the parieto-insular vestibular cortex (PIVC). Activity in PIVC has been observed during imaging studies of invasive vestibular stimulation, and we confirm its role in processing the vestibular cues accompanying natural head movements. Our findings demonstrate that fMRI can be used to study the neural basis of head movements and show that areas that control eye movements also control head movements. In addition, we provide the first evidence for brain activity associated with vestibular input produced by natural head movements as opposed to invasive caloric or galvanic vestibular stimulation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5395
Author(s):  
Jose L. Pardo-Vazquez ◽  
Carlos Acuña

Previous works have shown that neurons from the ventral premotor cortex (PMv) represent several elements of perceptual decisions. One of the most striking findings was that, after the outcome of the choice is known, neurons from PMv encode all the information necessary for evaluating the decision process. These results prompted us to suggest that this cortical area could be involved in shaping future behavior. In this work, we have characterized neuronal activity and behavioral performance as a function of the outcome of the previous trial. We found that the outcome of the immediately previous trial (n−1) significantly changes, in the current trial (n), the activity of single cells and behavioral performance. The outcome of trial n−2, however, does not affect either behavior or neuronal activity. Moreover, the outcome of difficult trials had a greater impact on performance and recruited more PMv neurons than the outcome of easy trials. These results give strong support to our suggestion that PMv neurons evaluate the decision process and use this information to modify future behavior.


PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001119
Author(s):  
Joan Orpella ◽  
Ernest Mas-Herrero ◽  
Pablo Ripollés ◽  
Josep Marco-Pallarés ◽  
Ruth de Diego-Balaguer

Statistical learning (SL) is the ability to extract regularities from the environment. In the domain of language, this ability is fundamental in the learning of words and structural rules. In lack of reliable online measures, statistical word and rule learning have been primarily investigated using offline (post-familiarization) tests, which gives limited insights into the dynamics of SL and its neural basis. Here, we capitalize on a novel task that tracks the online SL of simple syntactic structures combined with computational modeling to show that online SL responds to reinforcement learning principles rooted in striatal function. Specifically, we demonstrate—on 2 different cohorts—that a temporal difference model, which relies on prediction errors, accounts for participants’ online learning behavior. We then show that the trial-by-trial development of predictions through learning strongly correlates with activity in both ventral and dorsal striatum. Our results thus provide a detailed mechanistic account of language-related SL and an explanation for the oft-cited implication of the striatum in SL tasks. This work, therefore, bridges the long-standing gap between language learning and reinforcement learning phenomena.


2019 ◽  
Author(s):  
A. Wiehler ◽  
K. Chakroun ◽  
J. Peters

AbstractGambling disorder is a behavioral addiction associated with impairments in decision-making and reduced behavioral flexibility. Decision-making in volatile environments requires a flexible trade-off between exploitation of options with high expected values and exploration of novel options to adapt to changing reward contingencies. This classical problem is known as the exploration-exploitation dilemma. We hypothesized gambling disorder to be associated with a specific reduction in directed (uncertainty-based) exploration compared to healthy controls, accompanied by changes in brain activity in a fronto-parietal exploration-related network.Twenty-three frequent gamblers and nineteen matched controls performed a classical four-armed bandit task during functional magnetic resonance imaging. Computational modeling revealed that choice behavior in both groups contained signatures of directed exploration, random exploration and perseveration. Gamblers showed a specific reduction in directed exploration, while random exploration and perseveration were similar between groups.Neuroimaging revealed no evidence for group differences in neural representations of expected value and reward prediction errors. Likewise, our hypothesis of attenuated fronto-parietal exploration effects in gambling disorder was not supported. However, during directed exploration, gamblers showed reduced parietal and substantia nigra / ventral tegmental area activity. Cross-validated classification analyses revealed that connectivity in an exploration-related network was predictive of clinical status, suggesting alterations in network dynamics in gambling disorder.In sum, we show that reduced flexibility during reinforcement learning in volatile environments in gamblers is attributable to a reduction in directed exploration rather than an increase in perseveration. Neuroimaging findings suggest that patterns of network connectivity might be more diagnostic of gambling disorder than univariate value and prediction error effects. We provide a computational account of flexibility impairments in gamblers during reinforcement learning that might arise as a consequence of dopaminergic dysregulation in this disorder.


2021 ◽  
Author(s):  
Alex A. Legaria ◽  
Julia A. Licholai ◽  
Alexxai V. Kravitz

AbstractFiber photometry recordings are commonly used as a proxy for neuronal activity, based on the assumption that increases in bulk calcium fluorescence reflect increases in spiking of the underlying neural population. However, this assumption has not been adequately tested. Here, using endoscopic calcium imaging in the striatum we report that the bulk fluorescence signal correlates weakly with somatic calcium signals, suggesting that this signal does not reflect spiking activity, but may instead reflect subthreshold changes in neuropil calcium. Consistent with this suggestion, the bulk fluorescence photometry signal correlated strongly with neuropil calcium signals extracted from these same endoscopic recordings. We further confirmed that photometry did not reflect striatal spiking activity with simultaneous in vivo extracellular electrophysiology and fiber photometry recordings in awake behaving mice. We conclude that the fiber photometry signal should not be considered a proxy for spiking activity in neural populations in the striatum.Significance statementFiber photometry is a technique for recording brain activity that has gained popularity in recent years due to it being an efficient and robust way to record the activity of genetically defined populations of neurons. However, it remains unclear what cellular events are reflected in the photometry signal. While it is often assumed that the photometry signal reflects changes in spiking of the underlying cell population, this has not been adequately tested. Here, we processed calcium imaging recordings to extract both somatic and non-somatic components of the imaging field, as well as a photometry signal from the whole field. Surprisingly, we found that the photometry signal correlated much more strongly with the non-somatic than the somatic signals. This suggests that the photometry signal most strongly reflects subthreshold changes in calcium, and not spiking. We confirmed this point with simultaneous fiber photometry and extracellular spiking recordings, again finding that photometry signals relate poorly to spiking in the striatum. Our results may change interpretations of studies that use fiber photometry as an index of spiking output of neural populations.


2020 ◽  
Author(s):  
Natalia Barrios ◽  
Matheus Farias ◽  
Marta A Moita

AbstractAdjusting to a dynamic environment involves fast changes in the body’s internal state, characterized by coordinated alterations in brain activity, physiological and motor responses. Threat-induced defensive states are a classic example of coordinated adjustment of bodily responses, being cardiac regulation one of the best characterized in vertebrates. A great deal is known regarding the neural basis of invertebrate defensive behaviours, mainly in Drosophila melanogaster. However, whether physiological changes accompany these remains unknown. Here, we set out to describe the internal bodily state of fruit flies upon an inescapable threat and found cardiac acceleration during running and deceleration during freezing. In addition, we found that freezing leads to increased cardiac pumping from the abdomen towards the head-thorax, suggesting mobilization of energy resources. Concordantly, threat-triggered freezing reduces sugar levels in the hemolymph and renders flies less resistant to starvation. The cardiac responses observed during freezing were absent during spontaneous immobility, underscoring the active nature of freezing response. Finally, we show that baseline cardiac activity predicts the amount of freezing upon threat. This work reveals a remarkable similarity with the cardiac responses of vertebrates, suggesting an evolutionarily convergent defensive state in flies. Our findings are at odds with the widespread view that cardiac deceleration while freezing has first evolved in vertebrates and that it is energy sparing. Investigating the physiological changes coupled to defensive behaviours in the fruit fly has revealed that freezing is costly, yet accompanied by cardiac deceleration, and points to heart activity as a key modulator of defensive behaviours.


Sign in / Sign up

Export Citation Format

Share Document