scholarly journals Population differences in the length, early-life dynamics, and heritability of telomeres among European pied flycatchers

2021 ◽  
Author(s):  
Tiia Karkkainen ◽  
Toni Laaksonen ◽  
Malcolm Burgess ◽  
Alejandro Cantarero ◽  
Jesus Martinez-Padilla ◽  
...  

Telomere length and shortening rate are increasingly used as biomarkers for long-term costs in ecological and evolutionary studies because of their relationships with survival and fitness. Telomere length can be heritable, but both early-life conditions and later-life stressors can create variation in telomere shortening rate. Studies on between-population telomere length and dynamics are mostly lacking, despite the expectation that populations exposed to varying environmental constraints would present divergent telomere length patterns. Pied flycatcher (Ficedula hypoleuca) is a passerine bird spending the non-breeding period in sub-Saharan Africa but breeding across Eurasia (from Spain to western Siberia). Populations show marked differences in migration distance, genetics, breeding parameters, and egg components. We studied the large-scale variation of telomere length, early-life dynamics and heritability in the pied flycatcher by comparing six European populations across a north-south gradient (Finland, Estonia, England and Spain). There were clear population differences in telomere length, with English birds having the longest telomeres, followed by Spanish and lastly by Estonian and Finnish birds. Early-life telomere shortening rate tended to vary between populations, and faster nestling growth affected telomeres more negatively in northern than southern populations. The heritability of telomere length was moderate (h2 = 0.34 - 0.40), with stronger heritability to paternal than maternal telomere length. There was also evidence indicating that the level of paternal heritability could differ between populations. While the sources of between-population differences in telomere-related biology remain to be identified (i.e. genetics, environmental factors), our study illustrates the need to expand telomere studies at the between-population level.

2021 ◽  
Author(s):  
Bin-Yan Hsu ◽  
Nina Cossin-Sevrin ◽  
Antoine Stier ◽  
Suvi Ruuskanen

Early-life environment is known to affect later-life health and disease, which could be mediated by the early-life programming of telomere length, a key hallmark of ageing. According to the fetal programming of telomere biology hypothesis, variation in prenatal exposure to hormones is likely to influence telomere length. Yet the contribution of key metabolic hormones, i.e. thyroid hormones (THs), has been largely ignored. We recently showed that in contrast to predictions, exposure to elevated prenatal THs increased postnatal telomere length in wild collared flycatchers, but the generality of such effect, its underlying proximate mechanisms and consequences on survival have not been investigated. We therefore conducted a comprehensive study evaluating the impact of THs on potential drivers of telomere dynamics (growth, post-natal THs, mitochondria and oxidative stress), telomere length and medium-term survival using wild great tits as a model system. While prenatal THs did not significantly affect telomere length after hatching (i.e. day 7), they influenced postnatal telomere shortening (i.e. shorter telomeres at day 14 and the following winter) but not apparent survival. Circulating THs, mitochondrial density or oxidative stress biomarkers were not significantly influenced, whereas TH-supplemented group showed accelerated growth, which may explain the observed delayed effect on telomeres. We discuss several alternative hypotheses that may explain the contrast with our previous findings in flycatchers. Given that shorter telomeres in early life tend to be carried until adulthood and are often associated with decreased survival prospects, the effects of prenatal THs on telomeres may have long-lasting effects on senescence.


2019 ◽  
Vol 3 (s1) ◽  
pp. 23-23
Author(s):  
Mikel Maria Delgado ◽  
Melissa Bain ◽  
Tony C.A.T. Buffington

OBJECTIVES/SPECIFIC AIMS: The primary objective of this research is to determine whether being hand-reared, and deprived of early maternal interaction, will affect telomere length in orphaned kittens. The secondary goal is to examine how early maternal separation impacts the health, growth and behavior of orphaned kittens. METHODS/STUDY POPULATION: Kittens were fostered through local rescue groups and shelters. We collected blood samples from 42 orphaned kittens during the first week of their lives. Due to high mortality of this population, we obtained a second blood sample at eight weeks of age from only 30 of these kittens. We collected blood samples from 12 control kittens raised with mothers at during the first and eighth weeks of life. Blood samples are currently being processed with real time quantitative PCR (qPCR) by the Real-time PCR Research and Diagnostics Core Facility at the UC Davis School of Veterinary Medicine (SVM). This includes RNA extraction, cDNA synthesis, Reference Gene Validation, and qPCR analysis. Relative telomere length (RTL) will be calculated by comparing the average telomere abundance across three samples cells with that of a reference gene (single copy number) for each sample. The resulting T/S ratio (telomere to single copy) is proportional to the average telomere length. If T/S = 1, then telomere length in the sample and the reference are the same. RESULTS/ANTICIPATED RESULTS: Because telomeres show the fastest rate of shortening early in life, we predict that maternal separation will increase the rate of telomere shortening in kittens. We also predict that the telomeres of orphaned kittens will be shorter at both one week and eight weeks of age, compared to controls. DISCUSSION/SIGNIFICANCE OF IMPACT: This study will increase our understanding of early life adversity, a finding that can translate to other mammals. It will inform the practice of fostering neonatal kittens, and illuminate whether these kittens might be at higher risk than mother-reared kittens for health problems (which could be investigated in future studies). If significant telomere shortening occurs between collection periods, then future studies can take more frequent blood samples to determine what stages of early development are potentially most sensitive. If differences between groups are found, this will establish a protocol for several future research projects, such as testing whether these detrimental effects can be mitigated by environmental enrichment via activation of telomerase. Telomerase is an enzyme that appears to counteract some shortening of telomeres, and is activated by several external factors, including exercise. Thus, a logical follow up study would be developing and testing age-specific and appropriate enrichments that may activate telomerase and reduce telomere loss. Physical contact, whether human, mother, or siblings, is another possible source of telomerase activation in young kittens. Future studies also could quantify the effects of different sources of physical contact on telomere shortening. Finally, a positive finding would establish a need for longitudinal studies of the effects of early weaning on feline health and behavior and whether differences in early-life telomere lengths predict health and longevity of cats.


2020 ◽  
Vol 16 (11) ◽  
pp. 20200364
Author(s):  
Antoine Stier ◽  
Bin-Yan Hsu ◽  
Coline Marciau ◽  
Blandine Doligez ◽  
Lars Gustafsson ◽  
...  

The underlying mechanisms of the lifelong consequences of prenatal environmental condition on health and ageing remain little understood. Thyroid hormones (THs) are important regulators of embryogenesis, transferred from the mother to the embryo. Since prenatal THs can accelerate early-life development, we hypothesized that this might occur at the expense of resource allocation in somatic maintenance processes, leading to premature ageing. Therefore, we investigated the consequences of prenatal TH supplementation on potential hallmarks of ageing in a free-living avian model in which we previously demonstrated that experimentally elevated prenatal TH exposure accelerates early-life growth. Using cross-sectional sampling, we first report that mitochondrial DNA (mtDNA) copy number and telomere length significantly decrease from early-life to late adulthood, thus suggesting that these two molecular markers could be hallmarks of ageing in our wild bird model. Elevated prenatal THs had no effect on mtDNA copy number but counterintuitively increased telomere length both soon after birth and at the end of the growth period (equivalent to offsetting ca 4 years of post-growth telomere shortening). These findings suggest that prenatal THs might have a role in setting the ‘biological' age at birth, but raise questions about the nature of the evolutionary costs of prenatal exposure to high TH levels.


2021 ◽  
Author(s):  
Niclas U Lundsgaard ◽  
Rebecca L. Cramp ◽  
Craig E Franklin

Determining the contribution of elevated ultraviolet–B radiation (UVBR; 280 — 315 nm) to amphibian population declines is being hindered by a lack of knowledge about how different acute UVBR exposure regimes during early life history stages might affect post–metamorphic stages via long–term carryover effects. We acutely exposed tadpoles of the Australian green tree frog (Litoria caerulea) to a combination of different UVBR irradiances and doses in a multi–factorial experiment, and then reared them to metamorphosis in the absence of UVBR to assess carryover effects in subsequent juvenile frogs. Dose and irradiance of acute UVBR exposure influenced carryover effects into metamorphosis in somewhat opposing manners. Higher doses of UVBR exposure in larvae yielded improved rates of metamorphosis. However, exposure at a high irradiance resulted in frogs metamorphosing smaller in size and in poorer condition than frogs exposed to low and medium irradiance UVBR as larvae. We also demonstrate some of the first empirical evidence of UVBR-induced telomere shortening in vivo, which is one possible mechanism for life–history trade–offs impacting condition post-metamorphosis. These findings contribute to our understanding of how acute UVBR exposure regimes in early life affect later life–history stages, which has implications for how this stressor may shape population dynamics.


Author(s):  
Dorota Chapko ◽  
Jessica Butler ◽  
Corri Black ◽  
Marjorie Johnston ◽  
Caroline Fall ◽  
...  

IntroductionWe now have the opportunity to disentangle the complexities of lifespan brain health through linking rich birth cohorts data to novel information utilizing health informatics techniques. Wellcome Trust evidenced that efforts to manage and link digital health data require exploring the attitudes of public and data guardians towards this initiative. Objectives and ApproachOur teams in Aberdeen, Mysore and Mumbai have established general population cohorts that have provided evidence on the early-life origins of later-life diseases. In 2016, we engaged with the participants of the Aberdeen Children of the 1950s (62-68,N~8,400) in an event attended by 350 study members. We are also engaging with members and data guardians of Mysore Parthenon Cohort (20-21y,N~500), Mysore Birth Records Cohort (51-83y,N~750), and Mumbai Maternal Nutrition Cohort (5-11y,N~1,600). This qualitative project utilises focus groups and individual interviews. The goal is to understand their attitudes and perceived public benefits towards future novel data collection, data platforms and biorepositories. ResultsThe ACONF event attendees were very willing to volunteer for further studies. The highest support was for ‘provide a blood sample’ (92%) and the lowest for ‘take an online survey’ (83%). They were satisfied with data governance but had incomplete understanding of linkage possibilities with their data. Through the ongoing activities in Mysore and in Mumbai, we aim to achieve the following: 1) Develop awareness of health informatics through public engagement with participants and researchers; 2) Explore attitudes and potential barriers to creation of secure data linkage between imaging, laboratory, health data and outcomes to facilitate future linkage studies; 3) Understand what is required for interoperable, secure data storage and plan future biorepository as a resource for researchers that will build over time in India. Conclusion/ImplicationsThe proposed activities will inform preparation of a large scale grant to investigate the hypothesis that early life environment affects future risk of mental illness and cognitive ability globally. They will also begin to create a platform of enduring value for future cross-cultural population research.


2019 ◽  
Vol 116 (30) ◽  
pp. 15122-15127 ◽  
Author(s):  
Kurt Whittemore ◽  
Elsa Vera ◽  
Eva Martínez-Nevado ◽  
Carola Sanpera ◽  
Maria A. Blasco

Telomere shortening to a critical length can trigger aging and shorter life spans in mice and humans by a mechanism that involves induction of a persistent DNA damage response at chromosome ends and loss of cellular viability. However, whether telomere length is a universal determinant of species longevity is not known. To determine whether telomere shortening can be a single parameter to predict species longevities, here we measured in parallel the telomere length of a wide variety of species (birds and mammals) with very different life spans and body sizes, including mouse (Mus musculus), goat (Capra hircus), Audouin’s gull (Larus audouinii), reindeer (Rangifer tarandus), griffon vulture (Gyps fulvus), bottlenose dolphin (Tursiops truncatus), American flamingo (Phoenicopterus ruber), and Sumatran elephant (Elephas maximus sumatranus). We found that the telomere shortening rate, but not the initial telomere length alone, is a powerful predictor of species life span. These results support the notion that critical telomere shortening and the consequent onset of telomeric DNA damage and cellular senescence are a general determinant of species life span.


2013 ◽  
Vol 25 (3) ◽  
pp. 577-585 ◽  
Author(s):  
A. Asok ◽  
K. Bernard ◽  
T. L. Roth ◽  
J. B. Rosen ◽  
M. Dozier

AbstractEarly-life stress, such as maltreatment, institutionalization, and exposure to violence, is associated with accelerated telomere shortening. Telomere shortening may thus represent a biomarker of early adversity. Previous studies have suggested that responsive parenting may protect children from the negative biological and behavioral consequences of early adversity. This study examined the role of parental responsiveness in buffering children from telomere shortening following experiences of early-life stress. We found that high-risk children had significantly shorter telomeres than low-risk children, controlling for household income, birth weight, gender, and minority status. Further, parental responsiveness moderated the association between risk and telomere length, with more responsive parenting associated with longer telomeres only among high-risk children. These findings suggest that responsive parenting may have protective benefits on telomere shortening for young children exposed to early-life stress. Therefore, this study has important implications for early parenting interventions.


2018 ◽  
Vol 50 (11) ◽  
pp. 956-963
Author(s):  
S. A. Booth ◽  
G. D. Wadley ◽  
F. Z. Marques ◽  
M. E. Wlodek ◽  
F. J. Charchar

Background and aims: Fetal and postnatal growth restriction cause a predisposition to cardiovascular disease (CVD) in adulthood. Telomeres are repetitive DNA-protein structures that protect chromosome ends, and the loss of these repeats (a reduction in telomere length) is associated with CVD. As exercise preserves telomere length and cardiovascular health, the aim of this study was to determine the effects of growth restriction and exercise training on cardiac telomere length and telomeric genes. Methods and results: Pregnant Wistar Kyoto rats underwent bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction (“Restricted”). Sham-operated rats had either intact litters (“Control”) or their litters reduced to five pups with slowed postnatal growth (“Reduced”). Control, Restricted, and Reduced male rats were assigned to Sedentary, Early exercise (5–9 wk of age), or Late exercise (20–24 wk of age) groups. Hearts were excised at 24 wk of age for telomere length and gene expression measurements by quantitative PCR. Growth restriction shortened cardiac telomere length ( P < 0.001), but this was rescued by early exercise ( P < 0.001). Early and Late exercise increased cardiac weight index ( P < 0.001), but neither this nor telomere length was associated with expression of the telomeric genes Tert, Terc, Trf2, Pnuts, or Sirt1. Discussion and conclusions: Growth restriction shortens cardiac telomere length, reflecting the cardiac pathologies associated with low birth weight. Exercise in early life may offer long-term protective effects on cardiac telomere length, which could help prevent CVD in later life.


2021 ◽  
Author(s):  
Janske van de Crommenacker ◽  
Martijn Hammers ◽  
Hannah Louise Dugdale ◽  
Terry Burke ◽  
Jan Komdeur ◽  
...  

1.Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic ‘Predictive Adaptive Response’ (PAR), whereby they respond – in terms of physiology or life-history strategy – to the conditions experienced in early life to maximise later-life fitness. In particular, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual’s physiological state, individuals will accelerate their reproductive schedule to maximise fitness during their shorter predicted lifespan.2.We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test the predictions of the FLE hypothesis in a wild, long-lived model species. 3.Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler (Acrocephalus sechellensis). How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length – shorter telomers are a biomarker of an individual’s exposure to stress – can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. 4.Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the rate of early-life reproduction in either sex. These results do not support the key prediction of the Future Lifetime Expectation PAR hypothesis. 5.We found no support for the FLE hypothesis. However, at least for males, poor early-life body conditions were associated with lower first year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.


2021 ◽  
Author(s):  
Satashree Paul

Telomere length is associated with chronic stressors in adulthood and early adversity. Stress over the lifespan is thought to promote the accelerated aging and illness in early life.


Sign in / Sign up

Export Citation Format

Share Document