scholarly journals Human myelin protein P2: From crystallography to time-lapse membrane imaging and neuropathy-associated variants

2021 ◽  
Author(s):  
Maiju Uusitalo ◽  
Martin Berg Klenow ◽  
Saara Laulumaa ◽  
Matthew P Blakeley ◽  
Adam Cohen Simonsen ◽  
...  

Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot-Marie-Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patient families. To shed light on the structure and function of the corresponding P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations, and lipid binding assays. The crystal and solution structures of the I50del, M114T, and V115A variants of P2 showed only minor differences to the wild-type protein, whereas the thermal stability of the disease variants was reduced. Lipid vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed slightly altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated membrane blebbing induced by P2, which could be related to its function in stacking of two curved membrane surfaces in myelin in vivo. All variants caused blebbing of membranes on similar timescales. In order to better understand the links between structure, dynamics, and function, the crystal structure of perdeuterated P2 was refined from room temperature data collected using both neutrons and X-rays, and the results were compared to molecular dynamics simulations and cryocooled crystal structures. Taken together, our data indicate similar properties of all known CMT variants of human P2; while crystal structures are nearly identical, stability and function of the disease variants are impaired compared to the wild-type protein. Our data provide new insights into the structure-function relationships and dynamics of P2 in health and disease.

1999 ◽  
Vol 82 (08) ◽  
pp. 271-276 ◽  
Author(s):  
Glen Spraggon ◽  
Stephen Everse ◽  
Russell Doolittle

IntroductionAfter a long period of anticipation,1 the last two years have witnessed the first high-resolution x-ray structures of fragments from fibrinogen and fibrin.2-7 The results confirmed many aspects of fibrinogen structure and function that had previously been inferred from electron microscopy and biochemistry and revealed some unexpected features. Several matters have remained stubbornly unsettled, however, and much more work remains to be done. Here, we review several of the most significant findings that have accompanied the new x-ray structures and discuss some of the problems of the fibrinogen-fibrin conversion that remain unresolved. * Abbreviations: GPR—Gly-Pro-Arg-derivatives; GPRPam—Gly-Pro-Arg-Pro-amide; GHRPam—Gly-His-Arg-Pro-amide


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128954 ◽  
Author(s):  
Saara Laulumaa ◽  
Tuomo Nieminen ◽  
Mari Lehtimäki ◽  
Shweta Aggarwal ◽  
Mikael Simons ◽  
...  

2021 ◽  
Author(s):  
Jie Lan ◽  
Chunhui Sun ◽  
Xinping Liang ◽  
Ruixin Ma ◽  
Yuhua Ji ◽  
...  

Abstract Background: Thyroid dysgenesis (TD) is the main cause of congenital hypothyroidism (CH). As variants of the transcription factor Gli-similar 3 (GLIS3) have been associated with CH and GLIS3 is one of candidate genes of TD, we screened and characterized GLIS3 mutations in Chinese patients with CH and TD.Methods: To detect mutations, we sequenced all GLIS3 exons in the peripheral blood genomic DNA isolated from 50 patients with TD and 100 healthy individuals. Wild-type and mutant expression vectors of Glis3 were constructed. Quantitative real-time PCR, western blotting, and double luciferase assay were performed to investigation the effect of the mutations on GLIS3 protein function and transcriptional activation.Results: Two novel heterozygous missense mutations, c.2710G>A (p.G904R) and c.2507C>A (p.P836Q), were detected in two unrelated patients. Functional studies revealed that p.G904R expression was 59.95% lower and p.P836Q was 31.23% lower than wild-type GLIS3 mRNA expression. The p.G904R mutation also resulted in lower GLIS3 protein expression compared with that encoded by wild-type GLIS3. Additionally, the luciferase reporter assay revealed that p.G904R mediated impaired transcriptional activation compared with the wild-type protein (p < 0.05) but did not have a dominant-negative effect on the wild-type protein.Conclusions: We for the first time screened and characterized the function of GLIS3 mutations in Chinese individuals with CH and TD. Our study not only broadens the GLIS3 mutation spectrum, but also provides further evidence that GLIS3 defects cause TD.


2021 ◽  
Vol 22 (19) ◽  
pp. 10771
Author(s):  
Sundararajan Mahalingam ◽  
Srabani Karmakar ◽  
Puttur Santhoshkumar ◽  
Krishna K. Sharma

Previously, we showed that the removal of the 54–61 residues from αB-crystallin (αBΔ54–61) results in a fifty percent reduction in the oligomeric mass and a ten-fold increase in chaperone-like activity. In this study, we investigated the oligomeric organization changes in the deletion mutant contributing to the increased chaperone activity and evaluated the cytoprotection properties of the mutant protein using ARPE-19 cells. Trypsin digestion studies revealed that additional tryptic cleavage sites become susceptible in the deletion mutant than in the wild-type protein, suggesting a different subunit organization in the oligomer of the mutant protein. Static and dynamic light scattering analyses of chaperone–substrate complexes showed that the deletion mutant has more significant interaction with the substrates than wild-type protein, resulting in increased binding of the unfolding proteins. Cytotoxicity studies carried out with ARPE-19 cells showed an enhancement in anti-apoptotic activity in αBΔ54–61 as compared with the wild-type protein. The improved anti-apoptotic activity of the mutant is also supported by reduced caspase activation and normalization of the apoptotic cascade components level in cells treated with the deletion mutant. Our study suggests that altered oligomeric assembly with increased substrate affinity could be the basis for the enhanced chaperone function of the αBΔ54–61 protein.


FEBS Letters ◽  
1988 ◽  
Vol 240 (1-2) ◽  
pp. 196-200 ◽  
Author(s):  
Giovanna Scapin ◽  
Paola Spadon ◽  
Licia Pengo ◽  
Mario Mammi ◽  
Giuseppe Zanotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document