scholarly journals Effect of Structural Changes Induced by Deletion of 54FLRAPSWF61 Sequence in αB-Crystallin on Chaperone Function and Anti-Apoptotic Activity

2021 ◽  
Vol 22 (19) ◽  
pp. 10771
Author(s):  
Sundararajan Mahalingam ◽  
Srabani Karmakar ◽  
Puttur Santhoshkumar ◽  
Krishna K. Sharma

Previously, we showed that the removal of the 54–61 residues from αB-crystallin (αBΔ54–61) results in a fifty percent reduction in the oligomeric mass and a ten-fold increase in chaperone-like activity. In this study, we investigated the oligomeric organization changes in the deletion mutant contributing to the increased chaperone activity and evaluated the cytoprotection properties of the mutant protein using ARPE-19 cells. Trypsin digestion studies revealed that additional tryptic cleavage sites become susceptible in the deletion mutant than in the wild-type protein, suggesting a different subunit organization in the oligomer of the mutant protein. Static and dynamic light scattering analyses of chaperone–substrate complexes showed that the deletion mutant has more significant interaction with the substrates than wild-type protein, resulting in increased binding of the unfolding proteins. Cytotoxicity studies carried out with ARPE-19 cells showed an enhancement in anti-apoptotic activity in αBΔ54–61 as compared with the wild-type protein. The improved anti-apoptotic activity of the mutant is also supported by reduced caspase activation and normalization of the apoptotic cascade components level in cells treated with the deletion mutant. Our study suggests that altered oligomeric assembly with increased substrate affinity could be the basis for the enhanced chaperone function of the αBΔ54–61 protein.

2003 ◽  
Vol 285 (4) ◽  
pp. C823-C830 ◽  
Author(s):  
Bernard A. J. Roelen ◽  
Ori S. Cohen ◽  
Malay K. Raychowdhury ◽  
Deborah N. Chadee ◽  
Ying Zhang ◽  
...  

Smad4, the common Smad, is central for transforming growth factor (TGF)-β superfamily ligand signaling. Smad4 has been shown to be constitutively phosphorylated (Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin C-H, Miyazono K, and ten Dijke P. EMBO J 16: 5353-5362, 1997), but the site(s) of phosphorylation, the kinase(s) that performs this phosphorylation, and the significance of the phosphorylation of Smad4 are currently unknown. This report describes the identification of a consensus ERK phosphorylation site in the linker region of Smad4 at Thr276. Our data show that ERK can phosphorylate Smad4 in vitro but not Smad4 with mutated Thr276. Flag-tagged Smad4-T276A mutant protein accumulates less efficiently in the nucleus after stimulation by TGF-β and is less efficient in generating a transcriptional response than Smad4 wild-type protein. Tryptic phosphopeptide mapping identified a phosphopeptide in Smad4 wild-type protein that was absent in phosphorylated Smad4-T276A mutant protein. Our results suggest that MAP kinase can phosphorylate Thr276 of Smad4 and that phosphorylation can lead to enhanced TGF-β-induced nuclear accumulation and, as a consequence, enhanced transcriptional activity of Smad4.


2005 ◽  
Vol 187 (23) ◽  
pp. 7881-7889 ◽  
Author(s):  
Yuyen Lin ◽  
Justin B. Robbins ◽  
Ernest K. D. Nyannor ◽  
Yi-Hsing Chen ◽  
Isaac K. O. Cann

ABSTRACT We describe a CCCH type of zinc finger domain in a replication protein A (RPA) homolog found in members of different lineages of the Euryarchaeota, a subdomain of Archaea. The zinc finger is characterized by CX2CX8CX2H, where X is any amino acid. Using MacRPA3, a representative of this new group of RPA in Methanosarcina acetivorans, we made two deletion mutants: a C-terminal deletion mutant lacking the zinc finger and an N-terminal deletion mutant containing the zinc finger domain. Whereas the N-terminal deletion mutant contained zinc at a level comparable to the wild-type protein level, the C-terminal deletion mutant was devoid of zinc. We further created four different mutants of MacRPA3 by replacing each of the four invariable amino acids in the zinc finger with alanine. Each single mutation at an invariable position resulted in a protein containing less than 35% of the zinc found in the wild-type protein. Circular dichroism spectra suggested that although the mutation at the first cysteine resulted in minor perturbation of protein structure, mutations at the other invariable positions led to larger structural changes. All proteins harboring a mutation at one of the invariable positions bound to single-stranded DNA weakly, and this translated into reduced capacity to stimulate DNA synthesis by M. acetivorans DNA polymerase BI. By subjecting the protein and its mutants to oxidizing and reducing conditions, we demonstrated that ssDNA binding by MacRPA3 may be regulated by redox through the zinc finger. Thus, the zinc finger modules in euryarchaeal RPA proteins may serve as a means by which the function of these proteins is regulated in the cell.


2000 ◽  
Vol 84 (09) ◽  
pp. 413-419 ◽  
Author(s):  
Tusar Giri ◽  
Pablo de Frutos ◽  
Björn Dahlbäck

SummaryProtein S functions as a cofactor to activated protein C (APC) in the degradation of FVa and FVIIIa. In protein S, the thrombin sensitive region (TSR) and the first EGF-like domain are important for expression of the APC cofactor activity. A naturally occurring Thr103Asn (T103N) mutation in the first EGF-like domain of protein S has been associated with functional (type II) protein S deficiency. To elucidate the functional consequences of the T103N mutation, recombinant protein S mutant was expressed in mammalian cells and functionally characterised. The expression level of protein S T103N from transiently transfected COS 1 cells was equal to that of wild type protein S. The mutant protein S and wild type protein S were also expressed in 293 cells after stable transfection, and the recombinant proteins purified. In APTT-and PT-based coagulation assays, the mutant protein demonstrated approximately 50% lower anticoagulant activity as compared to wild type protein S. The functional defect was further investigated in FVa-and FVIIIa-degradation assays. The functional defect of mutant protein S was attenuated at increasing concentrations of APC. The results demonstrate the region around residue 103 of protein S to be of functional importance, possibly through a direct interaction with APC.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128954 ◽  
Author(s):  
Saara Laulumaa ◽  
Tuomo Nieminen ◽  
Mari Lehtimäki ◽  
Shweta Aggarwal ◽  
Mikael Simons ◽  
...  

2021 ◽  
Author(s):  
Jie Lan ◽  
Chunhui Sun ◽  
Xinping Liang ◽  
Ruixin Ma ◽  
Yuhua Ji ◽  
...  

Abstract Background: Thyroid dysgenesis (TD) is the main cause of congenital hypothyroidism (CH). As variants of the transcription factor Gli-similar 3 (GLIS3) have been associated with CH and GLIS3 is one of candidate genes of TD, we screened and characterized GLIS3 mutations in Chinese patients with CH and TD.Methods: To detect mutations, we sequenced all GLIS3 exons in the peripheral blood genomic DNA isolated from 50 patients with TD and 100 healthy individuals. Wild-type and mutant expression vectors of Glis3 were constructed. Quantitative real-time PCR, western blotting, and double luciferase assay were performed to investigation the effect of the mutations on GLIS3 protein function and transcriptional activation.Results: Two novel heterozygous missense mutations, c.2710G>A (p.G904R) and c.2507C>A (p.P836Q), were detected in two unrelated patients. Functional studies revealed that p.G904R expression was 59.95% lower and p.P836Q was 31.23% lower than wild-type GLIS3 mRNA expression. The p.G904R mutation also resulted in lower GLIS3 protein expression compared with that encoded by wild-type GLIS3. Additionally, the luciferase reporter assay revealed that p.G904R mediated impaired transcriptional activation compared with the wild-type protein (p < 0.05) but did not have a dominant-negative effect on the wild-type protein.Conclusions: We for the first time screened and characterized the function of GLIS3 mutations in Chinese individuals with CH and TD. Our study not only broadens the GLIS3 mutation spectrum, but also provides further evidence that GLIS3 defects cause TD.


1998 ◽  
Vol 329 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Esther YÁÑEZ ◽  
A. Teresa CARMONA ◽  
Mercedes TIEMBLO ◽  
Antonio JIMÉNEZ ◽  
María FERNÁNDEZ-LOBATO

The role of N-linked glycosylation on the biological activity of Schwanniomyces occidentalis SWA2 α-amylase, as expressed in Saccharomyces cerevisiae, was analysed by site-directed mutagenesis of the two potential N-glycosylation sites, Asn-134 and Asn-229. These residues were replaced by Ala or Gly individually or in various combinations and the effects on the activity, secretion and thermal stability of the enzyme were studied. Any Asn-229 substitution caused a drastic decrease in activity levels of the extracellular enzyme. In contrast, substitutions of Asn-134 had little or no effect. The use of antibodies showed that α-amylase was secreted in all the mutants tested, although those containing substitutions at Asn-229 seemed to have a lower rate of synthesis and/or higher degradation than the wild-type strain. α-Amylases with substitution at Asn-229 had a 2 kDa lower molecular mass than the wild-type protein, as did the wild-type protein itself after treatment with endoglycosidase F. These findings indicate that Asn-229 is the single glycosylated residue in SWA2. Thermostability analysis of both purified wild-type (T50 = 50 °C, where T50 is the temperature resulting in 50% loss of activity) and mutant enzymes indicated that removal of carbohydrate from the 229 position results in a decrease of approx. 3 °C in the T50 of the enzyme. The Gly-229 mutation does not change the apparent affinity of the enzyme for starch (Km) but decreases to 1/22 its apparent catalytic efficiency (kcat/Km). These results therefore indicate that glycosylation at the 229 position has an important role in the extracellular activity levels, kinetics and stability of the Sw. occidentalis SWA2 α-amylase in both its wild-type and mutant forms.


Sign in / Sign up

Export Citation Format

Share Document