scholarly journals Abscisic acid modulates auxin-responsive hypocotyl elongation

2021 ◽  
Author(s):  
Ryan Emenecker ◽  
Joseph Cammarata ◽  
Irene Yuan ◽  
Lucia Strader

Auxin regulates many aspects of plant growth and development in concert with other plant hormones. Auxin interactions with these other phytohormones to regulate distinct processes is not fully understood. Using a forward genetics screen designed to identify seedlings resistant to the suppressive effects of auxin on dark-grown hypocotyl elongation, we identified a mutant defective in ABA ALDEHYDE OXIDASE3 (AAO3), which encodes for the enzyme that carries out the final step in the biosynthesis of the plant hormone abscisic acid (ABA). We found that all examined ABA deficient mutants display resistance to the inhibitory effects of auxin on dark-grown hypocotyl elongation, suggesting that aspects of ABA signaling are downstream of auxin in regulating dark-grown hypocotyl elongation. Conversely, these mutants display wild type responsiveness to auxin in root elongation assays, suggesting that ABA does not act downstream of auxin in regulating elongation of the root. Our RNA-seq analysis suggests that many auxin-repressed genes in the hypocotyl require an intact ABA pathway for full repression. Our results suggest a model in which auxin partially requires intact ABA biosynthesis in order to regulate hypocotyl elongation, but not to regulate primary root elongation, suggesting that the genetic interactions between these two pathways are tissue-dependent.

Crop Science ◽  
2011 ◽  
Vol 51 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Kristen A. Leach ◽  
Lindsey G. Hejlek ◽  
Leonard B. Hearne ◽  
Henry T. Nguyen ◽  
Robert E. Sharp ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1247-1255 ◽  
Author(s):  
Eiji Nambara ◽  
Masaharu Suzuki ◽  
Suzanne Abrams ◽  
Donald R McCarty ◽  
Yuji Kamiya ◽  
...  

Abstract The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development under a diverse range of environmental conditions. To identify genes functioning in ABA signaling, we have carried out a screen for mutants that takes advantage of the ability of wild-type Arabidopsis seeds to respond to (−)-(R)-ABA, an enantiomer of the natural (+)-(S)-ABA. The premise of the screen was to identify mutations that preferentially alter their germination response in the presence of one stereoisomer vs. the other. Twenty-six mutants were identified and genetic analysis on 23 lines defines two new loci, designated CHOTTO1 and CHOTTO2, and a collection of new mutant alleles of the ABA-insensitive genes, ABI3, ABI4, and ABI5. The abi5 alleles are less sensitive to (+)-ABA than to (−)-ABA. In contrast, the abi3 alleles exhibit a variety of differences in response to the ABA isomers. Genetic and molecular analysis of these alleles suggests that the ABI3 transcription factor may perceive multiple ABA signals.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 885
Author(s):  
Takafumi Shimizu ◽  
Yuri Kanno ◽  
Hiromi Suzuki ◽  
Shunsuke Watanabe ◽  
Mitsunori Seo

The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.


2021 ◽  
Author(s):  
Yanying Wu ◽  
Yue Chang ◽  
Liming Luo ◽  
Wenqi Tian ◽  
Qingqiu Gong ◽  
...  

2014 ◽  
Vol 12 (S1) ◽  
pp. S70-S73 ◽  
Author(s):  
Feng Zhang ◽  
Yanting Shen ◽  
Shi Sun ◽  
Jianqiu Guo ◽  
Congcong Li ◽  
...  

Plant height is important for crop yield improvement. In this study, a dwarf mutant, Gmdwarf1, was screened from a γ-ray-treated soybean population. Compared with the wild type, the mutant exhibited later germination, smaller and darker green leaves, and less-elongated shoots. Genome-wide transcriptome detection through RNA-seq analysis revealed that not only gibberellin-related genes but many other genes involved in hormone biosynthetic pathways were also significantly influenced in the mutant. We presumed that Gmdwarf1 might play essential roles in the plant hormone pathways. Future functional analysis of this dwarf mutant would help us to understand the underlying mechanisms and be beneficial for improving soybean yield.


Author(s):  
Yue Yang ◽  
Wang Jueyun ◽  
Ren Wencai ◽  
Zhaosheng Zhou ◽  
Long Xiaohua ◽  
...  

Background: Jerusalem artichoke (Helianthus tuberosus L.) is tolerant to salinity stress and has high economic value. The salt tolerance mechanisms of Jerusalem artichoke are still unclear. Especially in the early stage of Jerusalem artichoke exposure to salt stress, the plant physiology, biochemistry and gene transcription are likely to undergo large changes. Elucidating these changes may be of great significance to understanding the salt tolerance mechanisms of it. Results: We obtained high-quality transcriptome from leaves and roots of Jerusalem artichoke exposed to salinity (300 mM NaCl) for 0 h, 6 h, 12 h, 24 h and 48 h, with 150,129 unigenes and 9023 DEGs (Differentially Expressed Genes). The RNA-seq data were clustered into time-dependent groups (nine clusters each in leaves and roots); gene functions were distributed evenly among the groups convergence. KEGG enrichment analysis showed the genes related to plant hormone signal transduction were enriched in almost all treatment comparisons. Under salt stress, genes belongs to PYL (abscisic acid receptor PYR / PYL family), PP2C (Type 2C protein phosphatases), GH3 (Gretchen Hagen3), ETR (ethylene receptor), EIN2/3 (ethylene-insensitive protein 2/3), JAZ (Genes such as jasmonate ZIM-domain gene) and MYC2 (Transcription factor MYC2) had extremely similar expression patterns. The results of qPCR of 12 randomly selected genes confirmed the accuracy of RNA-seq. Conclusions: Under the impact of high salinity (300mM) environment, Jerusalem artichoke in the seedling stage was difficult to survive for a long time, and the phenotype was severe in the short term. Based on the expression of genes on the time scale, we found that the distribution of gene functions in time is relatively even. Upregulation of the phytohormone signal transduction had a crucial role in the response of Jerusalem artichoke seedlings to salt stress, the genes of abscisic acid, auxin, ethylene, and jasmonic acid had the most obvious change pattern.


1994 ◽  
Vol 45 (Special_Issue) ◽  
pp. 1743-1751 ◽  
Author(s):  
Robert E. Sharp ◽  
Yajun Wu ◽  
Gary S. Voetberg ◽  
Imad N. Saab ◽  
Mary E. LeNoble

Sign in / Sign up

Export Citation Format

Share Document