scholarly journals DeepFake electrocardiograms: the beginning of the end for privacy issues in medicine

Author(s):  
Vajira Thambawita ◽  
Jonas L. Isaksen ◽  
Steven A. Hicks ◽  
Jonas Ghouse ◽  
Gustav Ahlberg ◽  
...  

SummaryBig data is needed to implement personalized medicine, but privacy issues are a prevalent problem for collecting data and sharing them between researchers. A solution is synthetic data generated to represent real dataset carrying similar information.Here, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 12-lead 10-sec electrocardiograms (ECGs). We have developed and compare two methods, namely WaveGAN* and Pulse2Pulse GAN. We trained the GANs with 7,233 real normal ECG to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. These synthetic ECGs are fully anonymous and cannot be referred to any individual, hence they may be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs.In conclusion, we were able to generate realistic synthetic ECGs using adversarial neural networks on normal ECGs from two population studies, i.e., there by solving the relevant privacy issues in medical datasets.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vajira Thambawita ◽  
Jonas L. Isaksen ◽  
Steven A. Hicks ◽  
Jonas Ghouse ◽  
Gustav Ahlberg ◽  
...  

AbstractRecent global developments underscore the prominent role big data have in modern medical science. But privacy issues constitute a prevalent problem for collecting and sharing data between researchers. However, synthetic data generated to represent real data carrying similar information and distribution may alleviate the privacy issue. In this study, we present generative adversarial networks (GANs) capable of generating realistic synthetic DeepFake 10-s 12-lead electrocardiograms (ECGs). We have developed and compared two methods, named WaveGAN* and Pulse2Pulse. We trained the GANs with 7,233 real normal ECGs to produce 121,977 DeepFake normal ECGs. By verifying the ECGs using a commercial ECG interpretation program (MUSE 12SL, GE Healthcare), we demonstrate that the Pulse2Pulse GAN was superior to the WaveGAN* to produce realistic ECGs. ECG intervals and amplitudes were similar between the DeepFake and real ECGs. Although these synthetic ECGs mimic the dataset used for creation, the ECGs are not linked to any individuals and may thus be used freely. The synthetic dataset will be available as open access for researchers at OSF.io and the DeepFake generator available at the Python Package Index (PyPI) for generating synthetic ECGs. In conclusion, we were able to generate realistic synthetic ECGs using generative adversarial neural networks on normal ECGs from two population studies, thereby addressing the relevant privacy issues in medical datasets.


2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2020 ◽  
Author(s):  
Alceu Bissoto ◽  
Sandra Avila

Melanoma is the most lethal type of skin cancer. Early diagnosis is crucial to increase the survival rate of those patients due to the possibility of metastasis. Automated skin lesion analysis can play an essential role by reaching people that do not have access to a specialist. However, since deep learning became the state-of-the-art for skin lesion analysis, data became a decisive factor in pushing the solutions further. The core objective of this M.Sc. dissertation is to tackle the problems that arise by having limited datasets. In the first part, we use generative adversarial networks to generate synthetic data to augment our classification model’s training datasets to boost performance. Our method generates high-resolution clinically-meaningful skin lesion images, that when compound our classification model’s training dataset, consistently improved the performance in different scenarios, for distinct datasets. We also investigate how our classification models perceived the synthetic samples and how they can aid the model’s generalization. Finally, we investigate a problem that usually arises by having few, relatively small datasets that are thoroughly re-used in the literature: bias. For this, we designed experiments to study how our models’ use data, verifying how it exploits correct (based on medical algorithms), and spurious (based on artifacts introduced during image acquisition) correlations. Disturbingly, even in the absence of any clinical information regarding the lesion being diagnosed, our classification models presented much better performance than chance (even competing with specialists benchmarks), highly suggesting inflated performances.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 111168-111180 ◽  
Author(s):  
Jinrui Wang ◽  
Shunming Li ◽  
Baokun Han ◽  
Zenghui An ◽  
Huaiqian Bao ◽  
...  

2021 ◽  
Author(s):  
Muhammad Haris Naveed ◽  
Umair Hashmi ◽  
Nayab Tajved ◽  
Neha Sultan ◽  
Ali Imran

This paper explores whether Generative Adversarial Networks (GANs) can produce realistic network load data that can be utilized to train machine learning models in lieu of real data. In this regard, we evaluate the performance of three recent GAN architectures on the Telecom Italia data set across a set of qualitative and quantitative metrics. Our results show that GAN generated synthetic data is indeed similar to real data and forecasting models trained on this data achieve similar performance to those trained on real data.


Author(s):  
Ming Hou ◽  
Brahim Chaib-draa ◽  
Chao Li ◽  
Qibin Zhao

 In this work, we consider the task of classifying binary positive-unlabeled (PU) data. The existing discriminative learning based PU models attempt to seek an optimal reweighting strategy for U data, so that a decent decision boundary can be found. However, given limited P data, the conventional PU models tend to suffer from overfitting when adapted to very flexible deep neural networks. In contrast, we are the first to innovate a totally new paradigm to attack the binary PU task, from perspective of generative learning by leveraging the powerful generative adversarial networks (GAN). Our generative positive-unlabeled (GenPU) framework incorporates an array of discriminators and generators that are endowed with different roles in simultaneously producing positive and negative realistic samples. We provide theoretical analysis to justify that, at equilibrium, GenPU is capable of recovering both positive and negative data distributions. Moreover, we show GenPU is generalizable and closely related to the semi-supervised classification. Given rather limited P data, experiments on both synthetic and real-world dataset demonstrate the effectiveness of our proposed framework. With infinite realistic and diverse sample streams generated from GenPU, a very flexible classifier can then be trained using deep neural networks.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Holly Burrows ◽  
Javad Zarrin ◽  
Lakshmi Babu-Saheer ◽  
Mahdi Maktab-Dar-Oghaz

It is becoming increasingly apparent that a significant amount of the population suffers from mental health problems, such as stress, depression, and anxiety. These issues are a result of a vast range of factors, such as genetic conditions, social circumstances, and lifestyle influences. A key cause, or contributor, for many people is their work; poor mental state can be exacerbated by jobs and a person’s working environment. Additionally, as the information age continues to burgeon, people are increasingly sedentary in their working lives, spending more of their days seated, and less time moving around. It is a well-known fact that a decrease in physical activity is detrimental to mental well-being. Therefore, the need for innovative research and development to combat negativity early is required. Implementing solutions using Artificial Intelligence has great potential in this field of research. This work proposes a solution to this problem domain, utilising two concepts of Artificial Intelligence, namely, Convolutional Neural Networks and Generative Adversarial Networks. A CNN is trained to accurately predict when an individual is experiencing negative emotions, achieving a top accuracy of 80.38% with a loss of 0.42. A GAN is trained to synthesise images from an input domain that can be attributed to evoking position emotions. A Graphical User Interface is created to display the generated media to users in order to boost mood and reduce feelings of stress. The work demonstrates the capability for using Deep Learning to identify stress and negative mood, and the strategies that can be implemented to reduce them.


Sign in / Sign up

Export Citation Format

Share Document