scholarly journals Increasing temperature weakens the positive effect of genetic diversity on population growth

2021 ◽  
Author(s):  
Alexandra L. Singleton ◽  
Megan H. Liu ◽  
Samantha Votzke ◽  
Andrea Yammine ◽  
Jean P. Gibert
2021 ◽  
Author(s):  
Alexandra L Singleton ◽  
Samantha Votzke ◽  
Andrea Yammine ◽  
Jean P Gibert

Genetic diversity and temperature increases associated with global climate change, are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species thermal optimum (i.e., the temperature at which population growth is maximal), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect almost completely disappears. We also show that a combination of changes in the amount of expressed genetic diversity (G), plastic changes in population growth across temperatures (E), and strong GxE interactions, underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.


Author(s):  
Shugatai Amangul

After Kazakhstan declared its independence, it became a large perform­er in the worldwide international migration process. The attraction of social and economic stability (with an increase in the level of liv­ing standard), stable ethno-demographic and population growth, no nationalist struggles as well as positive geopolitical situations, have lead to a huge flow of immigrants to Kazakhstan in the years since independence. In this study, I have suggested that results of the ethnic immigration policy include strengthening the national identity, creating a positive effect on the ethno-demographic outcomes, and increasing the number of the population size over the last nineteen years. DOI: http://dx.doi.org/10.5564/mjia.v0i17.87 Mongolian Journal of International Affairs, No.17 2012: 109-117


2021 ◽  
Vol 15 (3) ◽  
pp. 287-295
Author(s):  
Liucheng Wang ◽  
Huanhuan Zhao ◽  
Xianglin Song ◽  
Yake Li ◽  
Dong Li

Heavy metal pollution has adversely affected the ecological environment. As an eco-friendly and renewable material, biochar has a positive effect on environmental restoration. For study the feasibility of removing lead using corn straw biochar, the adsorption characteristics and mechanism were studied. This work prepared corn straw biochar at 300 °C, and its surface properties were characterized. The adsorption kinetics, isotherm, thermodynamics were determined. The result indicated the mechanism belonged ion exchange and complexation, and the experiment were controlled by comprehensive process, which included reaction rate and diffusion. The Langmuir model had better fitting results for the adsorption data, which indicated that adsorption was chemical adsorption and single molecular layer adsorption, and the maximum adsorption amount of corn straw biochar at 25 °C, 35 °C and 45 °C were 81.63 mg/g, 83.89 mg/g and 89.21 mg/g respectively. The thermodynamic analysis showed that increasing temperature was helpful to adsorption, and the adsorption was spontaneous. The results can be used for comprehensive utilization of straw and treatment of lead pollution.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4990
Author(s):  
Petr Pokorný ◽  
Jiří Kolísko ◽  
David Čítek ◽  
Michaela Kostelecká

The study explores the effect of elevated temperatures on the bond strength between prestressing reinforcement and ultra-high performance concrete (UHPC). Laboratory investigations reveal that the changes in bond strength correspond well with the changes in compressive strength of UHPC and their correlation can be mathematically described. Exposition of specimens to temperatures up to 200 °C does not reduce bond strength as a negative effect of increasing temperature is outweighed by the positive effect of thermal increase on the reactivity of silica fume in UHPC mixture. Above 200 °C, bond strength significantly reduces; for instance, a decrease by about 70% is observed at 800 °C. The decreases in compressive and bond strengths for temperatures above 400 °C are related to the changes of phase composition of UHPC matrix (as revealed by X-ray powder diffraction) and the changes in microstructure including the increase of porosity (verified by mercury intrusion porosimetry and observation of confocal microscopy) and development cracks detected by scanning electron microscopy. Future research should investigate the effect of relaxation of prestressing reinforcement with increasing temperature on bond strength reduction by numerical modelling.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Vladimir Jovovic ◽  
Suraj Joottu Thiagarajan ◽  
Joseph P. Heremans ◽  
Dmitry Khokhlov ◽  
Tanya Komissarova ◽  
...  

AbstractIndium in Pb1-xSnxTe alloys forms a resonant energy level in the conduction or valence bands, depending on x. In this study we investigate temperature dependence of the In level from 80 to 400K, complementing our previous work at 80 K. Measurements of electrical resistivity, thermopower, Hall and transverse Nernst-Ettinghausen effect are used to assess carrier mobility, Fermi level and scattering coefficient. Measurements are performed on a set of p and n type Pb1-xSnxTe:In with 0 < x < 30 at% and In up to 3 at%. We show that with increasing temperature the Fermi level crosses into the gap. It had been suggested theoretically that hybridization of the In level with one band at the Fermi level could have had a positive effect on the thermoelectric properties of materials, but the present results illustrate the need for temperature-dependent modeling and experimentation.


Author(s):  
Mireia Vidal-Villarejo ◽  
Fabian Freund ◽  
Hendrik Hanekamp ◽  
Andreas von Tiedemann ◽  
Karl Schmid

AbstractSetosphaeria turcica is a major fungal pathogen of maize and causes the foliar disease Northern corn leaf blight (NCLB). It originates from tropical regions and expanded into Central Europe since the 1980s, simultaneously with a rapid increase of maize cultivation area in this region. To investigate evolutionary processes influencing the rapid expansion of S. turcica we sequenced 121 isolates from Central Europe, Western Europe and Kenya. Population genetic inference revealed five genetically distinct clusters that differ by their geographic distribution and emergence dates. One genetically diverse cluster is restricted to Kenya, and the four European clusters consist of three distinct clonal lineages with low genetic diversity and one genetically diverse cluster with several clonal sublineages. A comparison of two different coalescent models for genetic diversity in the most frequent and geographically widespread clonal lineage in Europe supported a model of neutral, strongly exponential population growth over models accounting for different types of selection. In contrast to Kenyan isolates, European isolates did not show sexual recombination despite the presence of both mating types MAT1-1 and MAT1-2 in Europe. Within clonal lineages phenotypic variation in virulence to different monogenic resistances likely originated from repeated de novo mutations in virulence genes of S. turcica. k-mer based association mapping between genetic clusters did not identify genomic regions associated with pathogen races but few genomic regions that are significantly differentiated between two clonal lineages and contain putative effector genes. Our results suggest that the rapid colonization of Europe by different clonal lineages of S. turcica was not driven by selection of virulent races but reflects a neutral demographic process of fast pathogen population growth fostered by a rapid expansion of the maize cultivation area in this region.


Sign in / Sign up

Export Citation Format

Share Document