scholarly journals Calcium signaling in the photodamaged skin

2021 ◽  
Author(s):  
Viola Donati ◽  
Chiara Peres ◽  
Chiara Nardin ◽  
Ferdinando Scavizzi ◽  
Marcello Raspa ◽  
...  

BACKGROUND: The mammalian skin, the body's largest single organ, is a highly organized tissue that forms an essential barrier against dehydration, pathogens, light and mechanical injury. Damage triggers perturbations of the cytosolic free Ca2+ concentration ([Ca2+]c) that spread from cell to cell (known as intercellular Ca2+ waves) in different epithelia, including epidermis. Ca2+ waves are considered a fundamental mechanism for coordinating multicellular responses, however the mechanisms underlying their propagation in the damaged epidermis are incompletely understood. AIM OF THE PROJECT: To dissect the molecular components contributing to Ca2+ wave propagation in murine model of epidermal photodamage. METHODS: To trigger Ca2+ waves, we used intense and focused pulsed laser radiation and targeted a single keratinocyte of the epidermal basal layer in the earlobe skin of live anesthetized mice. To track photodamage-evoked Ca2+ waves, we performed intravital multiphoton microscopy in transgenic mice with ubiquitous expression of the sensitive and selective Ca2+ biosensor GCaMP6s. To dissect the molecular components contributing to Ca2+ wave propagation, we performed in vivo pharmacological interference experiments by intradermal microinjection of different drugs. EXPERIMENTAL RESULTS: The major effects of drugs that interfere with degradation of extracellular ATP or P2 purinoceptors suggest that Ca2+ waves in the photodamaged epidermis are primarily due to release of ATP from the target cell, whose plasma membrane integrity was compromised by laser irradiation. The limited effect of the Connexin 43 (Cx43) selective inhibitor TAT-Gap19 suggests ATP-dependent ATP release though connexin hemichannels (HCs) plays a minor role, affecting Ca2+ wave propagation only at larger distances, where the concentration of ATP released from the photodamaged cell was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases. The ineffectiveness of probenecid suggests pannexin channels have no role. As GCaMP6s signals in bystander keratinocytes were augmented by exposure to the Ca2+ chelator EGTA in the extracellular medium, the corresponding transient increments of the [Ca2+]c should be ascribed primarily to Ca2+ release from the ER, downstream of ATP binding to P2Y purinoceptors, with Ca2+ entry through plasma membrane channels playing a comparatively negligible role. The effect of thapsigargin (a well-known inhibitor of SERCA pumps) and carbenoxolone (a recently recognized inhibitor of Ca2+ release through IP3 receptors) support this conclusion. CONCLUSIONS: The one presented here is an experimental model for accidental skin injury that may also shed light on the widespread medical practice of laser skin resurfacing, used to treat a range of pathologies from photodamage and acne scars to hidradenitis suppurativa and posttraumatic scarring from basal cell carcinoma excision. The results of our experiments support the notion that Ca2+ waves reflect chiefly the sequential activation of bystander keratinocytes by the ATP released through the compromised plasma membrane of the cell hit by laser radiation. We attributed the observed increments of the [Ca2+]c chiefly to signal transduction through purinergic P2Y receptors. Several studies have highlighted fundamental roles of P2Y receptors during inflammatory and infectious diseases, and the initial phase of wound healing involves acute inflammation. In addition, hyaluronan is a major component of the extracellular matrix and its synthesis is rapidly upregulated after tissue wounding via P2Y receptor activation. It is tempting to speculate that response coordination after injury in the epidermis occurs via propagation of the ATP-dependent intercellular Ca2+ waves described in this work.

Function ◽  
2021 ◽  
Author(s):  
Viola Donati ◽  
Chiara Peres ◽  
Chiara Nardin ◽  
Ferdinando Scavizzi ◽  
Marcello Raspa ◽  
...  

Abstract The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration (${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain ${[ {{\rm{C}}{{\rm{a}}^{2 + }}} ]_c}$ oscillations.


2014 ◽  
Author(s):  
Mello Papa Patricia de ◽  
Carlos Ramires Neto ◽  
Priscilla Nascimento Guasti ◽  
Rosiara Rosaria Dias Maziero ◽  
Yame F R Sancler-Silva ◽  
...  

2021 ◽  
Vol 22 (13) ◽  
pp. 6978
Author(s):  
Maria J. Iraburu ◽  
Tommy Garner ◽  
Cristina Montiel-Duarte

The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


1993 ◽  
Vol 21 (3) ◽  
pp. 324-329
Author(s):  
Jeffrey R. Fry ◽  
Alison H. Hammond

A variety of approaches to assessment of cellular integrity exist, based on tests of integrity of the plasma membrane, tests of metabolic competence, and asessment of morphology. By definition, such approaches address different aspects of cellular integrity and hence are not interchangeable indices of cellular integrity. Accordingly, it would be most appropriate to characterise hepatocyte preparations on the basis of more than just trypan blue dye exclusion (a test of plasma membrane integrity) as is customary. A scheme for the choice of the most appropriate mix of tests of cellular integrity is presented.


2018 ◽  
Vol 115 (51) ◽  
pp. E11914-E11923 ◽  
Author(s):  
Asit Manna ◽  
Huaying Zhao ◽  
Junya Wada ◽  
Lakshmi Balagopalan ◽  
Harichandra D. Tagad ◽  
...  

The T cell antigen receptor encounters foreign antigen during the immune response. Receptor engagement leads to activation of specific protein tyrosine kinases, which then phosphorylate multiple enzymes and adapter proteins. One such enzyme, phospholipase-Cγ1, is responsible for cleavage of a plasma membrane lipid substrate, a phosphoinositide, into two second messengers, diacylglycerol, which activates several enzymes including protein kinase C, and an inositol phosphate, which induces intracellular calcium elevation. In T cells, phospholipase-Cγ1 is recruited to the plasma membrane as part of a four-protein complex containing three adapter molecules. We have used recombinant proteins and synthetic phosphopeptides to reconstitute this quaternary complex in vitro. Extending biophysical tools to study concurrent interactions of the four protein components, we demonstrated the formation and determined the composition of the quaternary complex using multisignal analytical ultracentrifugation, and we characterized the thermodynamic driving forces of assembly by isothermal calorimetry. We demonstrate that the four proteins reversibly associate in a circular arrangement of binding interfaces, each protein interacting with two others. Three interactions are of high affinity, and the fourth is of low affinity, with the assembly of the quaternary complex exhibiting significant enthalpy–entropy compensation as in an entropic switch. Formation of this protein complex enables subsequent recruitment of additional molecules needed to activate phospholipase-Cγ1. Understanding the formation of this complex is fundamental to full characterization of a central pathway in T cell activation. Such knowledge is critical to developing ways in which this pathway can be selectively inhibited.


1984 ◽  
Vol 247 (5) ◽  
pp. C382-C389 ◽  
Author(s):  
W. J. Armitage ◽  
P. Mazur

Human granulocytes are damaged by exposure to concentrations of glycerol as low as 0.5 M. We therefore investigated the addition of glycerol to granulocytes and its subsequent dilution under various conditions to try to distinguish between toxic and harmful osmotic effects of glycerol. The lesion caused by glycerol at 0 degree C was expressed as a loss of plasma membrane integrity (as visualized by fluorescein diacetate) only after incubation (greater than or equal to 1 h) at 37 degrees C. This damage was not ameliorated when osmotic stress was lessened by reducing the rates of addition and dilution of glycerol to keep the computed cell volume within 80-170% of isotonic cell volume. However, when osmotic stress was reduced further by increasing the temperature of addition and dilution of glycerol from 0 degree C to 22 degrees C, the tolerance of the cells to 1 M glycerol increased somewhat. Reducing exposure to glycerol to 3 min or less at 0 degree C greatly increased survival, but this time was too short to allow glycerol to equilibrate intracellularly. Finally, the presence of extra impermeant solute (NaCl or sucrose) in the medium to reduce the equilibrium cell volume to 60% of isotonic cell volume enabled granulocytes to survive 30-min exposure to 1 M glycerol at 0 degree C, but cells had to remain shrunken during the 37 degrees C incubation to prevent the loss of membrane integrity. Suspensions that contained damaged granulocytes formed aggregates when incubated at 37 degrees C, and these aggregates were responsible for a major fraction of the observed loss in viability.


Sign in / Sign up

Export Citation Format

Share Document