scholarly journals A systems-guided approach to discover the intracellular target of a novel evolution-drug lead

2021 ◽  
Author(s):  
Sourav Chowdhury ◽  
Daniel Craig Zielinski ◽  
Christopher Dalldorf ◽  
Joao V Rodrigues ◽  
Bernhard Palsson ◽  
...  

Understanding intracellular antibiotic targeting and the associated mechanisms leading to bacterial growth inhibition has been a difficult problem. Here, we discovered the additional intracellular targets of the novelevolution-drug lead CD15-3 designed to delay the emergence of antibiotic resistance by inhibiting bacterial DHFR and its Trimethoprim resistant variants. Overexpression of DHFR only partially rescued inhibition of E. coli growth by CD15.3 suggesting that CD15.3 also inhibits a non-DHFR target in the cell. We utilized untargeted global metabolomics and the metabolic network analysis along with structural similarity search of the putative targets to identify the additional target of CD15-3. We validated in vivo and in vitro that besides DHFR CD15-3 inhibits HPPK (folK), an essential protein upstream of DHFR in bacterial folate metabolism. This bivalent cellular targeting makes CD15-3 a promising lead to develop a monotherapy analogue of combination drugs.

1942 ◽  
Vol 25 (6) ◽  
pp. 805-817 ◽  
Author(s):  
M. G. Sevag ◽  
M. Shelburne ◽  
Stuart Mudd

The inhibiting effects of sulfonamide drugs and their derivatives on the anaerobic decarboxylation of pyruvic acid by Staphylococcus aureus, Escherichia coli, baker's and brewer's yeast, and a carboxylase preparation from brewer's yeast have been investigated. These drugs are: sulfanilamide, sulfapyridine, sulfadiazine, sulfamethyldiazine, sulfathiazole, sulfamethylthiazole, sulfanilamido-5-ethyl-4-thiazolone, 2-aminopyrimidine, 2-aminothiazole, and 2-aminopyridine. The sulfathiazole ring appears to exercise decidedly greater specific inhibiting effect on the carboxylases of Staph. aureus and E. coli. The inhibiting effect on yeast carboxylase is non-differentiable among all the substances tried, except sulfamethyldiazine which is completely ineffective on the carboxylases of the organisms studied. The specific inhibitory effect of sulfathiazole on the carboxylases of Staph. aureus and E. coli in comparison to sulfanilamide, sulfapyridine, and sulfadiazine is in harmony with in vivo and in vitro experimental results of other investigators. The results of the present investigation appear to support the hypothesis (1) that sulfonamides exert their bacteriostatic action through chemical affinity for the carrier proteins of certain respiratory enzymes of the bacterial cell, and that this affinity may in part be related to structural similarity between components of the drugs and the corresponding respiratory coenzymes.


2021 ◽  
Author(s):  
Elizabeth T. Montaño ◽  
Jason F. Nideffer ◽  
Joseph Sugie ◽  
Eray Enustun ◽  
Adam B. Shapiro ◽  
...  

AbstractIn this study, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules inhibiting the growth of E. coli and classified them according to their in vivo mechanisms of action. The mechanisms of action of PAINS are generally difficult to identify due to their promiscuity. However, we leveraged bacterial cytological profiling, a fluorescence microscopy technique, to study these complex mechanisms. Ultimately, we found that although some of our molecules promiscuously inhibit multiple cellular pathways, a few molecules specifically inhibit DNA replication despite their structural similarity to related PAINS. A genetic analysis of resistant mutants revealed that thymidylate kinase (an enzyme essential for DNA synthesis) is an intracellular target of some of these rhodanine-containing antibiotics. This finding was supported by assays of in vitro activity as well as experiments utilizing a thymidylate kinase overexpression system. The analog that demonstrated the lowest IC50in vitro and MIC in vivo displayed the greatest specificity for the inhibition of DNA replication in E. coli, despite containing a rhodamine moiety. While it’s generally thought that PAINS cannot be developed as antibiotics, this work highlights the utility of bacterial cytological profiling for studying the in vivo specificity of antibiotics, and it showcases novel inhibitors of E. coli thymidylate kinase.ImportanceWe demonstrate that bacterial cytological profiling is a powerful tool for directing antibiotic discovery efforts because it can be used to determine the specificity of an antibiotic’s in vivo mechanism of action. By assaying analogs of PAINS, molecules that are notoriously intractable and non-specific, we (surprisingly) identify molecules with specific activity against E. coli thymidylate kinase. This suggests that structural modifications to PAINS can confer stronger inhibition by targeting a specific cellular pathway. While in vitro inhibition assays are susceptible to false positive results (especially from PAINS), bacterial cytological profiling provides the resolution to identify molecules with specific in vivo activity.


2021 ◽  
Author(s):  
Elizabeth T. Montaño ◽  
Jason F. Nideffer ◽  
Joseph Sugie ◽  
Eray Enustun ◽  
Adam B. Shapiro ◽  
...  

In this study, we sought to determine if an in vivo assay for studying antibiotic mechanisms of action could provide insight into the activity of compounds that may inhibit multiple targets. Thus, we conducted an activity screen of 31 structural analogs of rhodanine-containing pan-assay interference compounds (PAINS). We identified nine active molecules against E. coli and classified them according to their in vivo mechanisms of action. The mechanisms of action of PAINS are generally difficult to identify due to their promiscuity. However, we leveraged bacterial cytological profiling, a fluorescence microscopy technique, to study these complex mechanisms. Ultimately, we found that although some of our molecules promiscuously inhibit multiple cellular pathways, a few molecules specifically inhibit DNA replication despite structural similarity to related PAINS. A genetic analysis of resistant mutants revealed thymidylate kinase (essential for DNA synthesis) as an intracellular target of some of these rhodanine-containing antibiotics. This finding was supported by in vitro activity assays as well as experiments utilizing a thymidylate kinase overexpression system. The analog that demonstrated the lowest IC 50 in vitro and MIC in vivo displayed the greatest specificity for inhibition of the DNA replication pathway, despite containing a rhodamine moiety. While it’s thought that PAINS cannot be developed as antibiotics, this work showcases novel inhibitors of E. coli thymidylate kinase. But perhaps more importantly, this work highlights the utility of bacterial cytological profiling for studying the in vivo specificity of antibiotics and demonstrates that BCP can identify multiple pathways that are inhibited by an individual molecule. Importance: We demonstrate that bacterial cytological profiling is a powerful tool for directing antibiotic discovery efforts because it can be used to determine the specificity of an antibiotic's in vivo mechanism of action. By assaying analogs of PAINS, molecules that are notoriously intractable and non-specific, we (surprisingly) identify molecules with specific activity against E. coli thymidylate kinase. This suggests that structural modifications to PAINS can confer stronger inhibition by targeting a specific cellular pathway. While in vitro inhibition assays are susceptible to false positive results (especially from PAINS), bacterial cytological profiling provides the resolution to identify molecules with specific in vivo activity.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 22 (3) ◽  
pp. 1491 ◽  
Author(s):  
Monica Iannotta ◽  
Carmela Belardo ◽  
Maria Consiglia Trotta ◽  
Fabio Arturo Iannotti ◽  
Rosa Maria Vitale ◽  
...  

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Sign in / Sign up

Export Citation Format

Share Document