scholarly journals Old data and friends improve with age: Advancements with the updated tools of GeneNetwork

2021 ◽  
Author(s):  
Alisha Chunduri ◽  
David G Ashbrook

Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD's recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis ('gene friends') and human PheWAS were used to further narrow candidates. Prominent candidate genes include: Slitrk6 in a Chr 14 QTL for locomotion in the center of an open field, we show to be part of a coexpression network involved in voluntary movement, and association with neuropsychiatric phenotypes in PheWAS; and Cdk14, one of only 3 genes in a Chr 5 QTL for handling induced convulsions after ethanol treatment, that is regulated by the anticonvulsant drug valproic acid. By using families of isogenic strains, we can reuse and reanalyse data to discover novel and highly plausible candidate genes involved in response to the environment.

2014 ◽  
Vol 10 (3) ◽  
pp. 327-337 ◽  
Author(s):  
Siriluck Ponsuksili ◽  
Eduard Murani ◽  
Nares Trakooljul ◽  
Manfred Schwerin ◽  
Klaus Wimmers

2015 ◽  
Vol 5 (4) ◽  
pp. 517-529 ◽  
Author(s):  
Pierre-François Roux ◽  
Simon Boitard ◽  
Yuna Blum ◽  
Brian Parks ◽  
Alexandra Montagner ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fei Zhang ◽  
Jinfeng Wu ◽  
Nir Sade ◽  
Si Wu ◽  
Aiman Egbaria ◽  
...  

Abstract Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits.


2018 ◽  
Vol 56 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Annalisa G Sega ◽  
Emily K Mis ◽  
Kristin Lindstrom ◽  
Saadet Mercimek-Andrews ◽  
Weizhen Ji ◽  
...  

BackgroundEarly infantile epileptic encephalopathies are severe disorders consisting of early-onset refractory seizures accompanied often by significant developmental delay. The increasing availability of next-generation sequencing has facilitated the recognition of single gene mutations as an underlying aetiology of some forms of early infantile epileptic encephalopathies.ObjectivesThis study was designed to identify candidate genes as a potential cause of early infantile epileptic encephalopathy, and then to provide genetic and functional evidence supporting patient variants as causative.MethodsWe used whole exome sequencing to identify candidate genes. To model the disease and assess the functional effects of patient variants on candidate protein function, we used in vivo CRISPR/Cas9-mediated genome editing and protein overexpression in frog tadpoles.ResultsWe identified novel de novo variants in neuronal differentiation factor 2 (NEUROD2) in two unrelated children with early infantile epileptic encephalopathy. Depleting neurod2 with CRISPR/Cas9-mediated genome editing induced spontaneous seizures in tadpoles, mimicking the patients’ condition. Overexpression of wild-type NEUROD2 induced ectopic neurons in tadpoles; however, patient variants were markedly less effective, suggesting that both variants are dysfunctional and likely pathogenic.ConclusionThis study provides clinical and functional support for NEUROD2 variants as a cause of early infantile epileptic encephalopathy, the first evidence of human disease caused by NEUROD2 variants.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xi Wu ◽  
Hui Feng ◽  
Di Wu ◽  
Shijuan Yan ◽  
Pei Zhang ◽  
...  

Abstract Background Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. Results Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. Conclusion Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.


2020 ◽  
Author(s):  
Daniel L. Powell ◽  
Cheyenne Payne ◽  
Mackenzie Keegan ◽  
Shreya M. Banerjee ◽  
Rongfeng Cui ◽  
...  

AbstractBiologists since Darwin have been fascinated by the evolution of sexually selected ornaments, particularly those that reduce viability. Uncovering the genetic architecture of these traits is key to understanding how they evolve and are maintained. Here, we investigate the genetic architecture of a sexually selected ornament, the “sword” fin extension that characterizes many species of swordtail fish (Xiphophorus). Using sworded and swordless sister species of Xiphophorus, we generated a mapping population and show that the sword ornament is polygenic – with ancestry across the genome explaining substantial variation in the trait. After accounting for the impacts of genome-wide ancestry, we identify one major effect QTL that explains ∼5% of the overall variation in the trait. Using a series of approaches, we narrow this large QTL interval to a handful of likely candidate genes, including the gene sp8. Notably, sp8 plays a regulatory role in fin regeneration and harbors several derived substitutions that are predicted to impact protein function in the species that has lost the sword ornament. Furthermore, we find evidence of selection on ancestry at sp8 in four natural hybrid populations, consistent with selection against the sword in these populations.


2019 ◽  
Author(s):  
Anne Oltmanns ◽  
Lara Hoepfner ◽  
Martin Scholz ◽  
Karen Zinzius ◽  
Stefan Schulze ◽  
...  

AbstractChlamydomonas reinhardtii N-glycans carry plant typical β1,2-core xylose, α1,3-fucose residues as well as plant atypical terminal β1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii.Significance StatementOur data provide novel insights into the function of XylT1B and FucT in C. reinhardtii as N-glycan core modifying enzymes. In the course of our study, different mutants were created by genetic crosses showing either varying or a lack of N-glycan core modification, enabling comparative analyses in relation to single N-glycan core epitope and overall protein function in C. reinhardtii.


2021 ◽  
Author(s):  
Martin Kerick ◽  
David González‐Serna ◽  
Elena Carnero‐Montoro ◽  
Maria Teruel ◽  
Marialbert Acosta‐Herrera ◽  
...  

2020 ◽  
Vol 4 (12) ◽  
Author(s):  
Manuela G M Rocha-Braz ◽  
Monica M França ◽  
Adriana M Fernandes ◽  
Antonio M Lerario ◽  
Evelin A Zanardo ◽  
...  

Abstract Context The genetic bases of osteoporosis (OP), a disorder with high heritability, are poorly understood at an individual level. Cases of idiopathic or familial OP have long puzzled clinicians as to whether an actionable genetic cause could be identified. Objective We performed a genetic analysis of 28 cases of idiopathic, severe, or familial osteoporosis using targeted massively parallel sequencing. Design Targeted sequencing of 128 candidate genes was performed using Illumina NextSeq. Variants of interest were confirmed by Sanger sequencing or SNP array. Patients and Setting Thirty-seven patients in an academic tertiary hospital participated (54% male; median age, 44 years; 86% with fractures), corresponding to 28 sporadic or familial cases. Main Outcome Measure The identification of rare stop-gain, indel, splice site, copy-number, or nonsynonymous variants altering protein function. Results Altogether, we identified 28 variants of interest, but only 3 were classified as pathogenic or likely pathogenic variants: COL1A2 p.(Arg708Gln), WNT1 p.(Gly169Asp), and IDUA p.(His82Gln). An association of variants in different genes was found in 21% of cases, including a young woman with severe OP bearing WNT1, PLS3, and NOTCH2 variants. Among genes of uncertain significance analyzed, a potential additional line of evidence has arisen for GWAS candidates GPR68 and NBR1, warranting further studies. Conclusions While we hope that continuing efforts to identify genetic predisposition to OP will lead to improved and personalized care in the future, the likelihood of identifying actionable pathogenic variants in intriguing cases of idiopathic or familial osteoporosis is seemingly low.


2017 ◽  
Author(s):  
Christopher A. Odhams ◽  
Deborah S. Cunninghame Graham ◽  
Timothy J. Vyse

AbstractGenome-wide association studies have identified hundreds of risk loci for autoimmune disease, yet only a minority (∼25%) share genetic effects with changes to gene expression (eQTLs) in immune cells. RNA-Seq based quantification at whole-gene resolution, where abundance is estimated by culminating expression of all transcripts or exons of the same gene, is likely to account for this observed lack of colocalisation as subtle isoform switches and expression variation in independent exons can be concealed. We performed integrative cis-eQTL analysis using association statistics from twenty autoimmune diseases (560 independent loci) and RNA-Seq data from 373 individuals of the Geuvadis cohort profiled at gene-, isoform-, exon-, junction-, and intron-level resolution in lymphoblastoid cell lines. After stringently testing for a shared causal variant using both the Joint Likelihood Mapping and Regulatory Trait Concordance frameworks, we found that gene-level quantification significantly underestimated the number of causal cis-eQTLs. Only 5.0-5.3% of loci were found to share a causal cis-eQTL at gene-level compared to 12.9-18.4% at exon-level and 9.6-10.5% at junction-level. More than a fifth of autoimmune loci shared an underlying causal variant in a single cell type by combining all five quantification types; a marked increase over current estimates of steady-state causal cis-eQTLs. As an example, we dissected in detail the genetic associations of systemic lupus erythematosus and functionally annotated the candidate genes. Many of the known and novel genes were concealed at gene-level (e.g. BANK1, UBE2L3, IKZF2, TYK2, LYST). By leveraging RNA-Seq, we were able to isolate the specific transcripts, exons, junctions, and introns modulated by the cis-eQTL - which supports the targeted design of follow-up functional studies involving alternative splicing. Causal cis-eQTLs detected at different quantification types were also found to localise to discrete epigenetic annotations. We provide our findings from all twenty autoimmune diseases as a web resource.Author SummaryIt is well acknowledged that non-coding genetic variants contribute to disease susceptibility through alteration of gene expression levels (known as eQTLs). Identifying the variants that are causal to both disease risk and changes to expression levels has not been easy and we believe this is in part due to how expression is quantified using RNA-Sequencing (RNA-Seq). Whole-gene expression, where abundance is estimated by culminating expression of all transcripts or exons of the same gene, is conventionally used in eQTL analysis. This low resolution may conceal subtle isoform switches and expression variation in independent exons. Using isoform-, exon-, and junction-level quantification can not only point to the candidate genes involved, but also the specific transcripts implicated. We make use of existing RNA-Seq expression data profiled at gene-, isoform-, exon-, junction-, and intron-level, and perform eQTL analysis using association data from twenty autoimmune diseases. We find exon-, and junction-level thoroughly outperform gene-level analysis, and by leveraging all five quantification types, we find >20% of autoimmune loci share a single genetic effect with gene expression. We highlight that existing and new eQTL cohorts using RNA-Seq should profile expression at multiple resolutions to maximise the ability to detect causal eQTLs and candidate genes.


Sign in / Sign up

Export Citation Format

Share Document