scholarly journals Genomic basis underlying the metabolome-mediated drought adaptation of maize

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fei Zhang ◽  
Jinfeng Wu ◽  
Nir Sade ◽  
Si Wu ◽  
Aiman Egbaria ◽  
...  

Abstract Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xi Wu ◽  
Hui Feng ◽  
Di Wu ◽  
Shijuan Yan ◽  
Pei Zhang ◽  
...  

Abstract Background Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. Results Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. Conclusion Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 527f-528
Author(s):  
I.L. Goldman

A fasciated flower stem character arose spontaneously during development of the red beet (Beta vulgaris L.) inbred line W411. The fasciated character is manifest by a flattened flower stem with petioles coalesced into a twisted, ribbonlike appearance. No fasciation is present in the vegetative stem or petioles. An inheritance study was conducted to determine the genetic control of flower stem fasciation. The inbred line W411 was used both as a male and female parent in crosses with four red beet inbred lines. Segregating progenies in both the BC1 and F2 generations were developed and scored for the fasciated flower stem character. Variable expression of the fasciated flower stem phenotype was observed in these progenies; however, the presence of flattened flower stems at the stem/hypocotyl junction was unequivocal. Chi-square goodness-of-fit tests in both the BC1 and F2 generations did not deviate significantly from expected ratios for a monogenic recessive character for each genetic background. No reciprocal differences were detected for any cross in this group of four inbred lines, which suggests the lack of maternal effect for the fasciated character. The symbol ffs is proposed to describe the genetic control of the fasciated flower stem phenotype.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jose Miguel Soriano ◽  
Pasqualina Colasuonno ◽  
Ilaria Marcotuli ◽  
Agata Gadaleta

AbstractThe genetic improvement of durum wheat and enhancement of plant performance often depend on the identification of stable quantitative trait loci (QTL) and closely linked molecular markers. This is essential for better understanding the genetic basis of important agronomic traits and identifying an effective method for improving selection efficiency in breeding programmes. Meta-QTL analysis is a useful approach for dissecting the genetic basis of complex traits, providing broader allelic coverage and higher mapping resolution for the identification of putative molecular markers to be used in marker-assisted selection. In the present study, extensive QTL meta-analysis was conducted on 45 traits of durum wheat, including quality and biotic and abiotic stress-related traits. A total of 368 QTL distributed on all 14 chromosomes of genomes A and B were projected: 171 corresponded to quality-related traits, 127 to abiotic stress and 71 to biotic stress, of which 318 were grouped in 85 meta-QTL (MQTL), 24 remained as single QTL and 26 were not assigned to any MQTL. The number of MQTL per chromosome ranged from 4 in chromosomes 1A and 6A to 9 in chromosome 7B; chromosomes 3A and 7A showed the highest number of individual QTL (4), and chromosome 7B the highest number of undefined QTL (4). The recently published genome sequence of durum wheat was used to search for candidate genes within the MQTL peaks. This work will facilitate cloning and pyramiding of QTL to develop new cultivars with specific quantitative traits and speed up breeding programs.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tifeng Yang ◽  
Lian Zhou ◽  
Junliang Zhao ◽  
Jingfang Dong ◽  
Qing Liu ◽  
...  

Abstract Background Direct seeding is an efficient cultivation technique in rice. However, poor low temperature germinability (LTG) of modern rice cultivars limits its application. Identifying the genes associated with LTG and performing molecular breeding is the fundamental way to address this issue. However, few LTG QTLs have been fine mapped and cloned so far. Results In the present study, the LTG evaluation of 375 rice accessions selected from the Rice Diversity Panel 2 showed that there were large LTG variations within the population, and the LTG of Indica group was significantly higher than that of Japonica and Aus groups (p < 0.01). In total, eleven QTLs for LTG were identified through genome-wide association study (GWAS). Among them, qLTG_sRDP2–3/qLTG_JAP-3, qLTG_AUS-3 and qLTG_sRDP2–12 are first reported in the present study. The QTL on chromosome 10, qLTG_sRDP2–10a had the largest contribution to LTG variations in 375 rice accessions, and was further validated using single segment substitution line (SSSL). The presence of qLTG_sRDP2–10a could result in 59.8% increase in LTG under 15 °C low temperature. The expression analysis of the genes within qLTG_sRDP2–10a region indicated that LOC_Os10g22520 and LOC_Os10g22484 exhibited differential expression between the high and low LTG lines. Further sequence comparisons revealed that there were insertion and deletion sequence differences in the promoter and intron region of LOC_Os10g22520, and an about 6 kb variation at the 3′ end of LOC_Os10g22484 between the high and low LTG lines, suggesting that the sequence variations of the two genes could be the cause for their differential expression in high and low LTG lines. Conclusion Among the 11 QTLs identified in this study, qLTG_sRDP2–10a could also be detected in other three studies using different germplasm under different cold environments. Its large effect and stable expression make qLTG_sRDP2–10a particularly valuable in rice breeding. The two genes, LOC_Os10g22484 and LOC_Os10g22520, were considered as the candidate genes underlying qLTG_sRDP2–10a. Our results suggest that integrating GWAS and SSSL can facilitate identification of QTL for complex traits in rice. The identification of qLTG_sRDP2–10a and its candidate genes provide a promising source for gene cloning of LTG and molecular breeding for LTG in rice.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110180
Author(s):  
Xiao Lin ◽  
Meng Zhou ◽  
Zehong Xu ◽  
Yusheng Chen ◽  
Fan Lin

In this study, we aimed to screen out genes associated with a high risk of postoperative recurrence of lung adenocarcinoma and investigate the possible mechanisms of the involvement of these genes in the recurrence of lung adenocarcinoma. We identify Hub genes and verify the expression levels and prognostic roles of these genes. Datasets of GSE40791, GSE31210, and GSE30219 were obtained from the Gene Expression Omnibus database. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the screened candidate genes using the DAVID database. Then, we performed protein–protein interaction (PPI) network analysis through the database STRING. Hub genes were screened out using Cytoscape software, and their expression levels were determined by the GEPIA database. Finally, we assessed the relationships of Hub genes expression levels and the time of survival. Forty-five candidate genes related to a high-risk of lung adenocarcinoma recurrence were screened out. Gene ontology analysis showed that these genes were enriched in the mitotic spindle assembly checkpoint, mitotic sister chromosome segregation, G2/M-phase transition of the mitotic cell cycle, and ATP binding, etc. KEGG analysis showed that these genes were involved predominantly in the cell cycle, p53 signaling pathway, and oocyte meiosis. We screened out the top ten Hub genes related to high expression of lung adenocarcinoma from the PPI network. The high expression levels of eight genes (TOP2A, HMMR, MELK, MAD2L1, BUB1B, BUB1, RRM2, and CCNA2) were related to short recurrence-free survival and they can be used as biomarkers for high risk of lung adenocarcinoma recurrence. This study screened out eight genes associated with a high risk of lung adenocarcinoma recurrence, which might provide novel insights into researching the recurrence mechanisms of lung adenocarcinoma as well as into the selection of targets in the treatment of the disease.


Author(s):  
Toshiyuki Sakai ◽  
Akira Abe ◽  
Motoki Shimizu ◽  
Ryohei Terauchi

Abstract Characterizing epistatic gene interactions is fundamental for understanding the genetic architecture of complex traits. However, due to the large number of potential gene combinations, detecting epistatic gene interactions is computationally demanding. A simple, easy-to-perform method for sensitive detection of epistasis is required. Due to their homozygous nature, use of recombinant inbred lines (RILs) excludes the dominance effect of alleles and interactions involving heterozygous genotypes, thereby allowing detection of epistasis in a simple and interpretable model. Here, we present an approach called RIL-StEp (recombinant inbred lines stepwise epistasis detection) to detect epistasis using single nucleotide polymorphisms in the genome. We applied the method to reveal epistasis affecting rice (Oryza sativa) seed hull color and leaf chlorophyll content and successfully identified pairs of genomic regions that presumably control these phenotypes. This method has the potential to improve our understanding of the genetic architecture of various traits of crops and other organisms.


2007 ◽  
Vol 41 (20) ◽  
pp. 6891-6900 ◽  
Author(s):  
Victor J. Nesatyy ◽  
Marc J.-F. Suter

Sign in / Sign up

Export Citation Format

Share Document