scholarly journals SARS-CoV-2 specific memory B-cells from individuals with diverse disease severities recognize SARS-CoV-2 variants of concern.

Author(s):  
Zoe L Lyski ◽  
Amanda E Brunton ◽  
Mathew I Strnad ◽  
Peter E Sullivan ◽  
Sarah A.R. Siegel ◽  
...  

In this investigation we examined the magnitude, breadth, and durability of SARS-CoV-2 specific antibodies in two distinct B-cell compartments: long-lived plasma cell-derived antibodies in the plasma, and peripheral memory B-cells along with their associated antibody profiles elicited after in vitro stimulation. We found that magnitude varied amongst individuals, but was the highest in hospitalized subjects. Variants of concern (VoC) -RBD-reactive antibodies were found in the plasma of 72% of samples in this investigation, and VoC-RBD-reactive memory B-cells were found in all but 1 subject at a single time-point. This finding, that VoC-RBD-reactive MBCs are present in the peripheral blood of all subjects including those that experienced asymptomatic or mild disease, provides a reason for optimism regarding the capacity of vaccination, prior infection, and/or both, to limit disease severity and transmission of variants of concern as they continue to arise and circulate.

2021 ◽  
Vol 12 ◽  
Author(s):  
Annalisa Ciabattini ◽  
Gabiria Pastore ◽  
Fabio Fiorino ◽  
Jacopo Polvere ◽  
Simone Lucchesi ◽  
...  

SARS-CoV-2 mRNA vaccines have demonstrated high efficacy and immunogenicity, but limited information is currently available on memory B cell generation and long-term persistence. Here, we investigated spike-specific memory B cells and humoral responses in 145 subjects, up to 6 months after the BNT162b2 vaccine (Comirnaty) administration. Spike-specific antibodies peaked 7 days after the second dose and significant antibody titers and ACE2/RBD binding inhibiting activity were still observed after 6 months, despite a progressive decline over time. Concomitant to antibody reduction, spike-specific memory B cells, mostly IgG class-switched, increased in the blood of vaccinees and persisted 6 months after vaccination. Following the in vitro restimulation, circulating memory B cells reactivated and produced spike-specific antibodies. A high frequency of spike-specific IgG+ plasmablasts, identified by computational analysis 7 days after boost, positively correlated with the generation of IgG+ memory B cells at 6 months. These data demonstrate that mRNA BNT162b2 vaccine elicits strong B cell immunity with spike-specific memory B cells that still persist 6 months after vaccination, playing a crucial role for a rapid response to SARS-CoV-2 virus encounter.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Peter Allacher ◽  
Christina K. Baumgartner ◽  
Aniko G. Pordes ◽  
Rafi U. Ahmad ◽  
Hans Peter Schwarz ◽  
...  

Abstract Factor VIII (FVIII)–specific memory B cells are essential components for regulating anamnestic antibody responses against FVIII in hemophilia A with FVIII inhibitors. We asked how stimulation and inhibition of FVIII-specific memory B cells by low and high concentrations of FVIII, respectively, are affected by concurrent activation of the innate immune system. Using CD138− spleen cells from hemophilic mice treated with FVIII to study restimulation and differentiation of memory B cells in vitro, we tested modulating activities of agonists for Toll-like receptors (TLRs) 2, 3, 4, 5, 7, and 9. Ligands for TLR7 and 9 were most effective. They not only amplified FVIII-specific memory responses in the presence of stimulating concentrations of FVIII, but also countered inhibition in the presence of inhibitory concentrations of FVIII. Notably, CpG oligodeoxynucleotide (CpG-ODN), a ligand for TLR9, expressed biphasic effects. It amplified memory responses at low concentrations and inhibited memory responses at high concentrations, both in vitro and in vivo. Both stimulatory and inhibitory activities of CpG-ODN resulted from specific interactions with TLR9. Despite their strong immunomodulatory effects in the presence of FVIII, ligands for TLR induced negligible restimulation in the absence of FVIII in vitro and no restimulation in the absence of FVIII in vivo.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Hans Peter Schwarz ◽  
Eva M. Muchitsch ◽  
Peter L. Turecek ◽  
...  

Abstract Memory B cells are responsible for the rapidly emerging antibody response after antigen reexposure. The signals required for the restimulation of memory B cells have not been fully explained. We used a murine model of anti–factor VIII (FVIII) antibody responses in hemophilia A to study the requirements for the restimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing cells. We were particularly interested in the significance of activated T cells and costimulatory interactions. Our results indicate that the restimulation of FVIII-specific memory B cells is strictly dependent on interactions with activated T cells. These activated T cells can be specific for either FVIII or third-party antigens. Restimulation by T cells specific for third-party antigens requires the presence of FVIII, indicating that signals induced by B-cell receptor (BCR) triggering and by interactions with activated T cells are important. The blockade of B7-1 or B7-2 as well as the blockade of CD40L inhibits the restimulation and differentiation of FVIII-specific memory B cells in vitro and in vivo. The interference with inducible costimulator–inducible costimulator ligand (ICOS-ICOSL) interactions, however, does not cause any modulation. As expected, the production of anti-FVIII antibodies by plasma cells is not dependent on any of the costimulatory interactions tested.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1016-1016 ◽  
Author(s):  
Irene Lang ◽  
Jerzy Windyga ◽  
Anna Klukowska ◽  
Josenato Ilas ◽  
Hans Peter Schwarz ◽  
...  

Abstract The development of neutralizing anti-FVIII antibodies (FVIII inhibitors) in about 30% of patients with severe hemophilia A is the most serious complication in the treatment of hemophilia patients with FVIII products. Little information is available on the immunological mechanisms that regulate the development and maintenance of FVIII inhibitors. Memory B cells are a central component of humoral immunity. They drive the rapid anamnestic antibody response that occurs after re-exposure to antigen and seem to be important for replenishing the pool of long-lived plasma cells to maintain long-term antibody levels in the absence of antigen. Nothing is known about the dynamics of FVIII-specific memory B cells in patients with hemophilia A who develop FVIII inhibitors. Recently, Crotty et al. (J Immunol Methods, 2004) described an in vitro assay to quantify antigen-specific memory B cells in human blood. This assay utilizes a 6-day polyclonal stimulation of peripheral blood mononuclear cells (PBMC) followed by an antigen-specific ELISPOT for the detection of memory B cells that have differentiated into antibody-secreting plasma cells in vitro. We adapted this assay to human FVIII and used it to track FVIII-specific memory B cells in the blood of hemophilia A patients with and without FVIII inhibitors. Human serum albumin was used as a negative control and tetanus toxin as a positive control. The numbers of FVIII-specific, tetanus toxin-specific (positive control) and albumin-specific (negative control) memory B cells were calculated as percentage of total IgG memory B cells. So far, we have analyzed 14 patients with hemophilia A (age: 6–65 years). 8 were positive and 6 were negative for FVIII inhibitors. For comparison, we have analyzed 20 healthy individuals (age: 19–48 years). 2 out of 8 patients with inhibitors had detectable FVIII-specific memory B cells in their peripheral blood cells. However, none of the patients without inhibitors and none of the healthy individuals had any detectable FVIII-specific memory B cells in their circulation. The detection limit for FVIII-specific memory B cells in patients with inhibitors was about 0.2 % (percent of total IgG memory B cells). Current activities focus on further advancing the method with the aim to improve the detection limit for the detection of FVIII-specific memory B cells. All samples analyzed (including patients and healthy individuals) were negative for human serum albumin-specific memory B cells (negative control). Tetanus toxin-specific memory B cells (positive control) were found in both patients and healthy blood donors. The percentage of tetanus toxin-specific memory B cells in individuals who were vaccinated with tetanus toxoid was in the range of 0.25 – 0.58 % (percent of total IgG memory B cells). We conclude that the method described is suitable to track FVIII-specific memory B cells in the circulation. We are currently asking the question whether the presence of FVIII-specific memory B cells in the circulation correlates with the persistence of FVIII inhibitors. Furthermore, we will monitor patients with inhibitors during ITI therapy in order to find out whether the disappearance of FVIII-specific memory B cells in the circulation could be an early predictor of a successful ITI outcome.


2021 ◽  
Author(s):  
Annalisa Ciabattini ◽  
Gabiria Pastore ◽  
Fabio Fiorino ◽  
Jacopo Polvere ◽  
Simone Lucchesi ◽  
...  

SARS-CoV-2 mRNA vaccines have demonstrated high efficacy and immunogenicity, but limited information is currently available on memory B cells generation and long-term persistence. Here, we investigated Spike-specific memory B cells and humoral responses in 145 subjects, up to six months after the BNT162b2 vaccine (Comirnaty) administration. Spike-specific antibody titers peaked 7 days after the second dose and significant titers and neutralizing activity were still observed after six months, despite a progressive decline over time. Concomitant to antibody reduction, Spike-specific memory B cells, mostly IgG class-switched, increased in blood of vaccinees and persisted six months after vaccination. Following in vitro restimulation, circulating memory B cells reactivated and produced Spike-specific antibodies. A high frequency of Spike-specific IgG+ plasmablasts, identified by computational analysis 7 days after boost, positively correlated with the generation of IgG+ memory B cells at six months. These data demonstrate that mRNA BNT162b2 vaccine elicits strong B cell immunity with Spike-specific memory B cells that still persist six months after vaccination, playing a crucial role for rapid response to SARS-CoV-2 virus encounter.


2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Christine S. Hopp ◽  
Padmapriya Sekar ◽  
Ababacar Diouf ◽  
Kazutoyo Miura ◽  
Kristin Boswell ◽  
...  

IgG antibodies play a role in malaria immunity, but whether and how IgM protects from malaria and the biology of Plasmodium falciparum (Pf)–specific IgM B cells is unclear. In a Mali cohort spanning infants to adults, we conducted longitudinal analyses of Pf- and influenza-specific B cells. We found that Pf-specific memory B cells (MBCs) are disproportionally IgM+ and only gradually shift to IgG+ with age, in contrast to influenza-specific MBCs that are predominantly IgG+ from infancy to adulthood. B cell receptor analysis showed Pf-specific IgM MBCs are somatically hypermutated at levels comparable to influenza-specific IgG B cells. During acute malaria, Pf-specific IgM B cells expand and upregulate activation/costimulatory markers. Finally, plasma IgM was comparable to IgG in inhibiting Pf growth and enhancing phagocytosis of Pf by monocytes in vitro. Thus, somatically hypermutated Pf-specific IgM MBCs dominate in children, expand and activate during malaria, and produce IgM that inhibits Pf through neutralization and opsonic phagocytosis.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 230.2-231
Author(s):  
A. Pappalardo ◽  
E. Wojciechowski ◽  
I. Odriozola ◽  
I. Douchet ◽  
N. Merillon ◽  
...  

Background:Neutrophils have been described as potent antigen-presenting cells able to activate T cells by MHC/TCR interaction and costimulatory molecules in tumor immunity. However, little is known about the direct interaction between neutrophils and CD4 T cells with respect to systemic lupus erythematosus (SLE). We have previously shown that OX40L expressed by monocytes from SLE patients promote the differentiation of naïve and memory cells into IL21 secreting T cells that are able to help B cells1,2.Objectives:In this study, we investigate OX40L expression on neutrophils from SLE patients and contribution of these OX40L+neutrophils in SLE pathogenesis to modulation of the B cell helper role of CD4 T cells.Methods:Surface expression of co-stimulatory molecules (OX40L, ICOSL, GITRL, 4-1BBL) on neutrophils from SLE patients and healthy donors (HD) was measured by flow cytometry (FC). Neutrophils from HD were stimulated with TLR7 or TLR8 agonists and IFNα after 5 hours of culture, OX40L expression was measured by FC and Western Blotting. CD4 T cells were cultured with the stimulated neutrophils for 3 days. At the end of the co-culture, percentages of IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated T cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and Ig levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.Results:Among the co-stimulatory molecules tested, percentages of OX40L+neutrophils in SLE (n=54) were increased compared to HD (n=25)(mean + SD: HD = 1,34%±1.62 vs SLE = 4,53%±8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0,04; r = 0,31) and with anti-DNA antibodies (p= 0,04, r = 0,33). Of note, the percentage of OX40L+neutrophils was higher in anti-sm-RNP+patients (n=16, mean= 9%±9.8), compared to anti-sm-RNP-patients (n=27, mean = 1,4%±2.5; p = 0,02). The percentage of OX40L+neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or IFNα priming followed by TLR7 agonist. When memory CD4 T cells were cultured in the presence of TLR8-stimulated neutrophils, the proportion of IL21-expressing Tfh (CXCR5+PD1+) and Tph (CXCR5-PD1hi) were increased, compared to culture with unstimulated neutrophils. This process was dependent on OX40-OX40L interactions, since in vitro treatment with the anti-OX40 blocking antibody ISB 830, inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.Conclusion:Our results disclose an unprecedented phenomenon where cross-talk between TLR7/8-activated neutrophils and CD4 lymphocytes operates through OX40L-OX40 costimulation, and neutrophils promote the differentiation of pro-inflammatory Tfh and Tph, as well as IL21 production. Therefore, OX40L/OX40 should be considered as a potentially therapeutic axis in SLE patients.References:[1]Jacquemin et al. Immunity 2015;[2]Jacquemin et al. JCI Insight 2018Disclosure of Interests:Angela Pappalardo Grant/research support from: Ichnos Sciences, Elodie Wojciechowski: None declared, Itsaso Odriozola: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Estibaliz Lazaro: None declared, Marie-Agnes Doucey Employee of: Ichnos Sciences, Lamine Mbow Employee of: Ichnos Sciences, Christophe Richez Consultant of: Abbvie, Amgen, Mylan, Pfizer, Sandoz and UCB., Patrick Blanco Grant/research support from: Ichnos Sciences


Sign in / Sign up

Export Citation Format

Share Document