Preventing restimulation of memory B cells in hemophilia A: a potential new strategy for the treatment of antibody-dependent immune disorders

Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Hans Peter Schwarz ◽  
Eva M. Muchitsch ◽  
Peter L. Turecek ◽  
...  

Abstract Memory B cells are responsible for the rapidly emerging antibody response after antigen reexposure. The signals required for the restimulation of memory B cells have not been fully explained. We used a murine model of anti–factor VIII (FVIII) antibody responses in hemophilia A to study the requirements for the restimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing cells. We were particularly interested in the significance of activated T cells and costimulatory interactions. Our results indicate that the restimulation of FVIII-specific memory B cells is strictly dependent on interactions with activated T cells. These activated T cells can be specific for either FVIII or third-party antigens. Restimulation by T cells specific for third-party antigens requires the presence of FVIII, indicating that signals induced by B-cell receptor (BCR) triggering and by interactions with activated T cells are important. The blockade of B7-1 or B7-2 as well as the blockade of CD40L inhibits the restimulation and differentiation of FVIII-specific memory B cells in vitro and in vivo. The interference with inducible costimulator–inducible costimulator ligand (ICOS-ICOSL) interactions, however, does not cause any modulation. As expected, the production of anti-FVIII antibodies by plasma cells is not dependent on any of the costimulatory interactions tested.

1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Peter Allacher ◽  
Christina K. Baumgartner ◽  
Aniko G. Pordes ◽  
Rafi U. Ahmad ◽  
Hans Peter Schwarz ◽  
...  

Abstract Factor VIII (FVIII)–specific memory B cells are essential components for regulating anamnestic antibody responses against FVIII in hemophilia A with FVIII inhibitors. We asked how stimulation and inhibition of FVIII-specific memory B cells by low and high concentrations of FVIII, respectively, are affected by concurrent activation of the innate immune system. Using CD138− spleen cells from hemophilic mice treated with FVIII to study restimulation and differentiation of memory B cells in vitro, we tested modulating activities of agonists for Toll-like receptors (TLRs) 2, 3, 4, 5, 7, and 9. Ligands for TLR7 and 9 were most effective. They not only amplified FVIII-specific memory responses in the presence of stimulating concentrations of FVIII, but also countered inhibition in the presence of inhibitory concentrations of FVIII. Notably, CpG oligodeoxynucleotide (CpG-ODN), a ligand for TLR9, expressed biphasic effects. It amplified memory responses at low concentrations and inhibited memory responses at high concentrations, both in vitro and in vivo. Both stimulatory and inhibitory activities of CpG-ODN resulted from specific interactions with TLR9. Despite their strong immunomodulatory effects in the presence of FVIII, ligands for TLR induced negligible restimulation in the absence of FVIII in vitro and no restimulation in the absence of FVIII in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 38-38
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Maria Sasgary ◽  
Christopher B. Doering ◽  
Pete S. Lollar ◽  
...  

Abstract Inhibitory antibodies against factor VIII (FVIII) are the major complication experienced by hemophilia A patients treated with FVIII products. The most effective therapy to eradicate these antibodies is elevated doses of FVIII over a prolonged period. Despite clinical practice in using such protocols, nothing is known about the immunological mechanisms that cause the down-modulation of FVIII-specific immune responses and the induction of long-lasting immune tolerance against FVIII. Understanding the underlying mechanisms, however, would facilitate designing new therapeutic strategies. The re-stimulation of FVIII-specific memory responses after each dose of FVIII is probably the most important event in the maintenance of FVIII inhibitors in patients. Therefore, the eradication of these memory responses should be an essential step in the down-modulation of inhibitory antibodies and the induction of immune tolerance. We used a murine model of hemophilia A to answer the question whether FVIII-specific memory responses are sensitive to increasing doses of FVIII. In particular, we were interested in the differential effects of FVIII on memory-B-cell and memory-T-cell responses. For the analysis of FVIII-specific memory responses, we re-stimulated FVIII-specific memory B- and T-cells obtained from spleens of hemophilic mice treated with four doses of human FVIII or eight doses of murine FVIII as described (Sasgary et al.: Thromb Haemost2002; 87:266–72; Hausl et al.: Blood2004; 104:115–22). Our results show dose-dependent effects of FVIII on the re-stimulation of FVIII-specific memory B cells in vitro. Physiological concentrations of FVIII below 100 ng/ml re-stimulate memory B cells and induce their differentiation into anti-FVIII antibody-secreting plasma cells. Supra-physiological concentrations above 100 ng/ml, however, inhibit memory-B-cell re-stimulation. The inhibition of memory-B-cell re-stimulation is irreversible and seems to be due to an induction of apoptosis that is at least partly mediated by Fas-dependent mechanisms. Furthermore, the inhibition appears to be initiated by triggering the B-cell receptor (BCR) without the requirement of an excessive cross-linking of the BCR. The activation of FVIII-specific T cells is not affected by increasing doses of FVIII. We conclude that the induction of apoptosis in FVIII-specific memory B cells might be the first step in the induction of immune tolerance in hemophilia A patients with FVIII inhibitors who receive high doses of FVIII. The eradication of memory B cells would prevent their differentiation into antibody-secreting plasma cells and, moreover, might lead to a deficiency of effective antigen-presenting cells required for the re-stimulation of FVIII-specific memory T cells. The induction of regulatory T cells rather than effector T cells could be the consequence of this deficiency.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1016-1016 ◽  
Author(s):  
Irene Lang ◽  
Jerzy Windyga ◽  
Anna Klukowska ◽  
Josenato Ilas ◽  
Hans Peter Schwarz ◽  
...  

Abstract The development of neutralizing anti-FVIII antibodies (FVIII inhibitors) in about 30% of patients with severe hemophilia A is the most serious complication in the treatment of hemophilia patients with FVIII products. Little information is available on the immunological mechanisms that regulate the development and maintenance of FVIII inhibitors. Memory B cells are a central component of humoral immunity. They drive the rapid anamnestic antibody response that occurs after re-exposure to antigen and seem to be important for replenishing the pool of long-lived plasma cells to maintain long-term antibody levels in the absence of antigen. Nothing is known about the dynamics of FVIII-specific memory B cells in patients with hemophilia A who develop FVIII inhibitors. Recently, Crotty et al. (J Immunol Methods, 2004) described an in vitro assay to quantify antigen-specific memory B cells in human blood. This assay utilizes a 6-day polyclonal stimulation of peripheral blood mononuclear cells (PBMC) followed by an antigen-specific ELISPOT for the detection of memory B cells that have differentiated into antibody-secreting plasma cells in vitro. We adapted this assay to human FVIII and used it to track FVIII-specific memory B cells in the blood of hemophilia A patients with and without FVIII inhibitors. Human serum albumin was used as a negative control and tetanus toxin as a positive control. The numbers of FVIII-specific, tetanus toxin-specific (positive control) and albumin-specific (negative control) memory B cells were calculated as percentage of total IgG memory B cells. So far, we have analyzed 14 patients with hemophilia A (age: 6–65 years). 8 were positive and 6 were negative for FVIII inhibitors. For comparison, we have analyzed 20 healthy individuals (age: 19–48 years). 2 out of 8 patients with inhibitors had detectable FVIII-specific memory B cells in their peripheral blood cells. However, none of the patients without inhibitors and none of the healthy individuals had any detectable FVIII-specific memory B cells in their circulation. The detection limit for FVIII-specific memory B cells in patients with inhibitors was about 0.2 % (percent of total IgG memory B cells). Current activities focus on further advancing the method with the aim to improve the detection limit for the detection of FVIII-specific memory B cells. All samples analyzed (including patients and healthy individuals) were negative for human serum albumin-specific memory B cells (negative control). Tetanus toxin-specific memory B cells (positive control) were found in both patients and healthy blood donors. The percentage of tetanus toxin-specific memory B cells in individuals who were vaccinated with tetanus toxoid was in the range of 0.25 – 0.58 % (percent of total IgG memory B cells). We conclude that the method described is suitable to track FVIII-specific memory B cells in the circulation. We are currently asking the question whether the presence of FVIII-specific memory B cells in the circulation correlates with the persistence of FVIII inhibitors. Furthermore, we will monitor patients with inhibitors during ITI therapy in order to find out whether the disappearance of FVIII-specific memory B cells in the circulation could be an early predictor of a successful ITI outcome.


2018 ◽  
Vol 2 (18) ◽  
pp. 2332-2340 ◽  
Author(s):  
Kalpana Parvathaneni ◽  
David W. Scott

Abstract Hemophilia A is an X-linked bleeding disorder caused by mutations in the factor VIII (FVIII) gene (F8). Treatment with recombinant or plasma-derived FVIII replacement therapy is standard therapy. A major problem in treating hemophilia A patients with therapeutic FVIII is that 20% to 30% of these patients produce neutralizing anti-FVIII antibodies (inhibitors) because they are not immunologically tolerant to this human protein. Hence, there is a need to establish tolerogenic protocols to FVIII epitopes. To specifically target FVIII-specific B cells, we engineered immunodominant FVIII domains (A2 and C2) as a chimeric antigen receptor expressed by both human and murine cytotoxic T cells. This FVIII domain engineered B-cell antibody receptor (BAR) that expresses T cells was capable of killing FVIII-reactive B-cell hybridomas in vitro and in vivo. Moreover, FVIII BAR CD8 T cells blocked the development of specific antibody from unimmunized spleen cells stimulated polyclonally with lipopolysaccharide in vitro. In addition, adoptive transfer of FVIII A2- and C2-BAR CD8 T cells significantly reduced the anti-FVIII antibody formation in hemophilic mice. These data suggest that BAR-engineered T cells are a promising approach for future prophylactic treatment for patients with severe hemophilia A who are at high risk of developing inhibitors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 316-316
Author(s):  
Shih-Shih Chen ◽  
Piers E.M. Patten ◽  
Rita Simone ◽  
Sonia Marsilio ◽  
Jacqueline C. Barrientos ◽  
...  

Abstract Abstract 316 Chronic lymphocytic leukemia (CLL) clones contain activated/proliferative leukemic cells in lymphoid tissues and resting cells in the periphery. Different subsets of CLL cells have distinct proliferation rates. Recently divided “proliferative” cells have a surface membrane phenotype of CXCR4DIMCD5BRIGHT (CXCR4DIM) and contain higher numbers of CD38+ and Ki-67+ cells. Circulating “resting” CLL cells express CXCR4BRIGHTCD5DIM (CXCR4BR) and genetic signatures of older, quiescent cells that need to home to lymphoid tissues or die. CXCR4DIM and CXR4BR subsets are relatively minor (1–10% of total) components of CLL clones, with the major fraction (≥90%) of CLL cells having intermediate levels of CXCR4 and CD5 (CXCR4INT). Based on these differences, we proposed a model of transitioning CXCR4DIM → CXCR4INT → CXCR4BR CLL cells in the blood. Because higher birth rates correlate with more aggressive disease, and transiting back to solid tissues permits clonal survival and re-activation, this model suggests CXCR4DIM and CXCR4BR subsets as therapeutic targets. Aiming to further understand functional differences in CLL subsets in vitro and in vivo, we found that CLL subsets differ in cell size (CXCR4DIM>CXCR4INT>CXCR4BR), in vivo apoptosis and transmigration in vitro (both CXCR4DIM< CXCR4INT< CXCR4BR). Thus, while more CXCR4BR cells undergo apoptosis, CXCR4BR cells can migrate better to tissues to receive survival signals. In vivo functional differences were then studied in a NOD/SCID/γcnull (NSG) mouse model using pre-activated CLL-derived autologous T cells. Primary CLL blood cells from 1 M-CLL and 2 U-CLL patients were sorted for CXCR4BR, CXCR4INT or CXCR4DIM fractions. Each fraction (5×106 cells) was injected into NSG mice with 5×105 CD3/28-activated autologous T cells. At weeks 2–6 post transfer, blood analyses showed more extensive expansion of CLL B and T cells in mice received CXCR4DIM than in those injected with CXCR4BR or CXCR4INT. At weeks 9–12, mice were sacrificed. Although T cells dominated in blood, spleen and bone marrow of all recipients, a larger fraction of CLL B cells existed in CXCR4BR injected mice, suggesting better long-term CLL cell engraftment capacity of this fraction. Because regulation of T cells plays key roles in CLL cell survival/growth in patients and in the NSG adoptive transfer model, we next analyzed the same fractions for their abilities to activate T cells and elicit help for engraftment and growth. Unactivated CD5+ T cells (1–1.5×105) and B-CLL fractions (3–5×106 cells) were sorted from 6 patient samples (3 U-CLL and 3 M-CLL), injected into mice and followed bi-weekly until week 6. In 5 cases, except one with few CXCR4BR and CXCR4DIM cells, CXCR4DIM injected mice had more extensive T cell growth starting from week 2. Mice injected with CXCR4BR from 2 U-CLL cases also showed T cell expansions, but at comparatively lesser levels and at later time points (from week 4–5). At week 6, CLL B cells were found in spleen and bone marrow in mice with activated T cells; the numbers of CLL B cells correlated with T cell numbers. Also, identical CXCR4 levels were found in CLL cells regardless of origination from CXCR4BR or CXCR4DIM. Notably, no human B or T cells were detected in CXCR4INT injected mice. In fact, adding CXCR4INT cells to CXCR4DIM mice suppressed CXCR4DIM induced T cell expansion and cytokine production. Specifically, mice receiving both CXCR4DIM and CXCR4INT cells had diminished T cell expansion and at least 3 fold reduced serum levels of IFNγ and IL5. Overall, our data confirm the need for activated T cells for CLL B cell growth in mice; suggest superior long term CLL B cell engraftment by CXCR4BR cells with activated T cell support, and identify a greater ability of CXCR4DIM cells to activate autologous T cells, although some U-CLL CXCR4BR cells could do so to a lesser degree. Superior activation of T cells by CXCR4DIM B cells may be due to higher numbers of CD23+, CD25+, CD27+, CD29+ and CD44+ cells in CXCR4DIM fraction that facilitate cellular interactions. Finally, unlike CXCR4BR and CXCR4DIM cells, the major fraction in patient blood, CXCR4INT, inhibited T cell activation. These results indicate previously unappreciated levels of intraclonal CLL cell heterogeneity that may have important clinical relevance, allow more precise biologic analyses, and provide a rationale for preferential therapeutic targeting of these fractions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1020-1020 ◽  
Author(s):  
Pauline M.W. van Helden ◽  
Paul H.P. Kaijen ◽  
H. Marijke van den Berg ◽  
Jan Voorberg

Abstract The quick anamnestic antibody response seen after recurrent exposure to antigen involves memory B- cells that, helped by T-cells, undergo rigid proliferation and subsequent differentiation into antibody producing cells. The presence of a pool of memory B-cells allows for a rapid response to antigens which quickly eliminates incoming pathogens. In the context of immune responses to therapeutic agents such as blood coagulation factor VIII (FVIII), antigenic re-stimulation of specific memory B-cells is undesirable. In approximately 25% of hemophilia A patients replacement therapy is hampered by inhibitory antibodies that bind to FVIII. Currently, the FVIII-specific memory B-cell compartment in patients with hemophilia A has remained poorly characterized. We have developed a protocol that allows for identification and quantification of circulating memory B-cells in patients with hemophilia A. CD19+ B-cells were sorted on a layer of irradiated EL4B5 thymoma cells expressing CD40L in the presence of the supernatant of mitogen-stimulated T-cells. These experimental conditions, that mimic the interaction of B-cells with an activating helper CD4+ T-cell, induce proliferation of memory B-cells and allow them to differentiate into antibody secreting cells (ASC) in an antigen-independent manner. After 9–10 days of culture, total IgG and FVIII-specific IgG was determined by ELISA and number of ASC was determined by ELISpot. We analyzed blood samples of five multi-transfused patients (>50 FVIII administrations) who never experienced any inhibitor episode, five patients who experienced inhibitory antibodies in the past but were successfully treated with immune tolerance induction and 6 patients with an inhibitor at the time of blood sampling. The ELISA set-up appeared to be more sensitive than ELISpot showing ASC producing anti-FVIII antibodies varying from 0.2–50 ng/ml. In contrast, ELISpot analysis only allowed for detection of B-cell clones producing over ~4 ng/ml of FVIII-specific IgG. Frequencies of FVIII-specific memory B-cells varied from 0–0.027% of total number of circulating peripheral B-cells. The relative amount of circulating memory B-cells did not correspond to inhibitor titers as measured in a Bethesda assay. The highest frequencies were observed in patients suffering from anamnestic response to FVIII suggesting the importance of antigenic stimulation for maintenance of memory B-cell levels. This is further supported by the low frequency that was observed in a high-titer inhibitor patient who had not been treated with FVIII for several months prior to blood sampling. Surprisingly, we detected FVIII-specific memory B-cells in two multi-transfused patients who did not experience any inhibitor episode in the past. These B-cells were present in a low frequency however and developed into ASC producing only limited amounts of anti-FVIII antibodies. These observations suggest that peripheral blood memory B-cells can develop in the absence of clinically relevant inhibitors.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1155-1155 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi U. Ahmad ◽  
Bernhard Baumgartner ◽  
...  

Abstract Memory B cells are essential for maintaining FVIII inhibitors in patients with hemophilia A. Using the murine E-17 model of hemophilia A, we showed previously that re-exposure to FVIII re-stimulates memory B cells very rapidly and drives their differentiation into antibody-producing plasma cells. Furthermore, we presented evidence that the re-stimulation of FVIII-specific memory B cells is regulated by the dose of FVIII used. Low doses re-stimulate memory B cells whereas high doses of FVIII inhibit this process and prevent the differentiation into anti-FVIII antibody-producing plasma cells. Both the re-stimulation and the inhibition can be modulated by triggering toll-like receptors (TLR) 7 and 9 with specific ligands that are typically found in microbial components derived from viruses or bacteria. Re-stimulation of FVIII-specific memory B cells in the presence of TLR ligands can even be observed in the absence of CD4+ helper T cells that are otherwise absolutely essential for this process. Based on these previous observations we asked whether the re-stimulation of FVIII-specific memory B cells in the absence of CD4+ helper T cells requires interaction with alternative “helper” cells that provide co-stimulatory signals to memory B cells. To address this question we used spleen cells obtained from hemophilic mice treated with FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity of the different cell populations was achieved by a combination of magnetic bead separation and multi-color flow cytometric cell sorting. The memory B cell compartment was specified by the expression of CD19 together with surface IgG and the absence of surface IgM and IgD. Memory B cells were single-cell sorted and cultivated in micro-well cultures in the presence of FVIII to stimulate the in vitro differentiation into anti-FVIII antibody- producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 or 9 and dendritic cells were added to the micro-well cultures to find out which of the additives were required for the re-stimulation and differentiation of memory B cells. Neither FVIII alone nor any combination of FVIII and ligands for TLR 7 and 9 were able to re-stimulate highly purified memory B cells to differentiate into anti-FVIII antibody-producing plasma cells. The re-stimulation strictly depended on the presence of additional cells that could provide co-stimulation. These additional cells could be either activated CD4+ T cells or, alternatively, plasmacytoid dendritic cells activated by ligands for TLR 7 or 9. Some re-stimulation in the presence of activated plasmacytoid dendritic cells was even observed in the complete absence of FVIII. Based on our results we conclude that plasmacytoid dendritic cells that are activated by TLR ligands such as those expressed by infectious agents can replace CD4+ T cells in triggering the re-stimulation of memory B cells and their differentiation into antibody-producing plasma cells. Our findings provide important new insights into the regulation of memory-B-cell re-stimulation that need to be considered in the development of new therapeutic strategies for treating patients with FVIII inhibitors. Furthermore, our findings underscore the importance of environmental factors in the regulation of FVIII inhibitor development.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 84-84
Author(s):  
Juan Chen ◽  
Jocelyn A. Schroeder ◽  
Xiaofeng Luo ◽  
Robert R. Montgomery ◽  
Qizhen Shi

Abstract Development of inhibitory antibodies (inhibitors) against FVIII is the significant complication in protein replacement therapy for hemophilia A (HA). Currently, immune tolerance induction (ITI) with aggressive infusion of high-dose FVIII represents the only effective therapeutic approach for eradication of FVIII inhibitors and results in restoration of normal FVIII pharmacokinetics in inhibitor patients. Whether the use of FVIII products containing VWF will affect the efficacy of the ITI is still a debated issue in the treatment of inhibitor patients. In this study, we explored the impact of VWF on FVIII immune responses in HA with pre-existing anti-F8 immunity using both in vitro and in vivomodels. Since the FVIII immune response is CD4+ T cell dependent, we first investigated how VWF affects FVIII-primed CD4+ T cells in response to FVIII restimulation. To address this question, we used a T cell proliferation assay. FVIIInull (F8null) mice were immunized with recombinant human FVIII (rhF8) to induce inhibitor development. Splenocytes from primed mice were labeled with CellTrace™ Violet and cultured with rhF8 with or without rhVWF. Four days later, cells were analyzed by FACS to assess the daughter (proliferated) cell population. The percentage of daughter CD4+ T cells (14.0±7.5%) in the condition cultured with 1 U/ml of rhF8 was significantly higher than without rhF8 (3.7±1.7%, n=6). The daughter cells further increased to 21.5±10.3% when cells were incubated with 10 U/ml of rhF8. However, when rhVWF was added to the culture media in addition to rhF8, percentages of daughter CD4+ T cells were significantly decreased in both the 1 U/ml and 10 U/ml rhF8 treatment groups (10.4±7.1% and 15. 8±8.4%, respectively). To further explore how VWF affects the FVIII immune response, we analyzed cytokine profiles in T cell culture supernants using a multiplex ELISA assay. The levels of IFNg and IL10 in the groups cultured with rhF8 in the presence of rhVWF were significantly lower than in the groups cultured with rhF8 only. The levels of TNFa, IL4, IL5, and IL12 in the groups cultured with rhF8 together with rhVWF were not significantly different than those in rhF8 groups without VWF. These results demonstrated that VWF significantly suppresses rhF8-primed CD4+ T cell proliferation in response to rhF8 restimulation and the inhibition is via the Th1 pathway. In a setting of pre-existing anti-F8 immunity, how FVIII-specific memory B cells respond to FVIII-restimulation and mature to antibody secreting cells (ASCs) is the critical pathway in terms of the clinical efficacy of FVIII infusion. To investigate how VWF affects memory B cell maturation upon FVIII restimulation, we used ELISPOT-based assay. Splenocytes from rhF8-primed HA mice were used as the source to prepare F8-specific memory B cell pools. CD138+ cells were depleted and the remaining cells were used as a pool of memory B cells. To stimulate the maturation of F8-specific memory B cells into ASCs, memory B cell pools from primed F8null mice were cultured with rhF8 with or without rhVWF for 6 days. After culture, newly formed ASCs were assessed by the ELISPOT assay. There were 54.4±19.5 ASCs/106 cells when cells from memory B cell pool were cultured with 0.05 U/ml rhF8. In contrast, there was only 15.6±1.6 ASCs/106cells after the cells were cultured with rhF8 together with rhVWF, indicating that memory B cell maturation is suppressed in the presence of rhVWF. We then used an in vivo model to further evaluate the impact of VWF on the immunogenicity of FVIII in HA with pre-existing immunity. Since we are unable to mimic the human ITI in F8null mice, we transferred memory B cells from rhF8-primed F8null splenocytes into immunocompromised F8null mice followed by rhF8 immunization in the presence or absence of rhVWF. Blood samples were collected one week after immunization for analysis. The inhibitor titer in animals that received rhF8-primed memory B cell pool followed by rhF8 immunization was 45.9±63.0 BU/ml (n=11), which was significantly higher than the titer in animals immunized with rhF8 together with rhVWF (23.9±38.4, P<.01). These results demonstrate that VWF suppressed the anti-F8 memory response in vivo. In summary, our ex vivo and in vivo data demonstrated that VWF attenuates F8-primed CD4+T cells and memory B cells in response to rhF8 restimulation, suggesting that infusion of FVIII together with VWF might reduce anti-F8 memory responses in HA with inhibitors. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document