scholarly journals The Digital Analytic Patient Reviewer (DAPR) for COVID-19 Data Mart Validation

Author(s):  
Heekyong Park ◽  
Taowei David Wang ◽  
Nich Wattanasin ◽  
Victor M. Castro ◽  
Vivian Gainer ◽  
...  

Objective: To provide high-quality data for COVID-19 research, we validated COVID-19 clinical indicators and 22 associated computed phenotypes, which were derived by machine learning algorithms, in the Mass General Brigham (MGB) COVID-19 Data Mart. Materials and Methods: Fifteen reviewers performed a manual chart review for 150 COVID-19 positive patients in the data mart. To support rapid chart review for a wide range of target data, we offered the Digital Analytic Patient Reviewer (DAPR). DAPR is a web-based chart review tool that integrates patient notes and provides note search functionalities and a patient-specific summary view linked with relevant notes. Within DAPR, we developed a COVID-19 validation task-oriented view and information extraction logic, enabled fast access to data, and considered privacy and security issues. Results: The concepts for COVID-19 positive cohort, COVID-19 index date, COVID-19 related admission, and the admission date were shown to have high values in all evaluation metrics. For phenotypes, the overall specificities, PPVs, and NPVs were high. However, sensitivities were relatively low. Based on these results, we removed 3 phenotypes from our data mart. In the survey about using the tool, participants expressed positive attitudes towards using DAPR for chart review. They assessed the validation was easy and DAPR helped find relevant information. Some validation difficulties were also discussed. Discussion and Conclusion: DAPR's patient summary view accelerated the validation process. We are in the process of automating the workflow to use DAPR for chart reviews. Moreover, we will extend its use case to other domains.

Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


Author(s):  
Rajendra Akerkar

A wide range of smart mobility technologies are being deployed within urban environment. These technologies generate huge quantities of data, much of them in real-time and at a highly granular scale. Such data about mobility, transport, and citizens can be put to many beneficial uses and, if shared, for uses beyond the system and purposes for which they were generated. Jointly, these data create the evidence base to run mobility services more efficiently, effectively, and sustainably. However, generating, processing, analyzing, sharing, and storing vast amounts of actionable data also raises several concerns and challenges. For example, data privacy, data protection, and data security issues arise from the creation of smart mobility. This chapter highlights the various privacy and security concerns and harms related to the deployment and use of smart mobility technologies and initiatives, and makes suggestions for addressing apprehensions about and harms arising from data privacy, protection, and security issues.


Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


Author(s):  
Michael Webster ◽  
Jutta Buschbom ◽  
Alex Hardisty ◽  
Andrew Bentley

Specimens have long been viewed as critical to research in the natural sciences because each specimen captures the phenotype (and often the genotype) of a particular individual at a particular point in space and time. In recent years there has been considerable focus on digitizing the many physical specimens currently in the world’s natural history research collections. As a result, a growing number of specimens are each now represented by their own “digital specimen”, that is, a findable, accessible, interoperable and re-usable (FAIR) digital representation of the physical specimen, which contains data about it. At the same time, there has been growing recognition that each digital specimen can be extended, and made more valuable for research, by linking it to data/samples derived from the curated physical specimen itself (e.g., computed tomography (CT) scan imagery, DNA sequences or tissue samples), directly related specimens or data about the organism's life (e.g., specimens of parasites collected from it, photos or recordings of the organism in life, immediate surrounding ecological community), and the wide range of associated specimen-independent data sets and model-based contextualisations (e.g., taxonomic information, conservation status, bioclimatological region, remote sensing images, environmental-climatological data, traditional knowledge, genome annotations). The resulting connected network of extended digital specimens will enable new research on a number of fronts, and indeed this has already begun. The new types of research enabled fall into four distinct but overlapping categories. First, because the digital specimen is a surrogate—acting on the Internet for a physical specimen in a natural science collection—it is amenable to analytical approaches that are simply not possible with physical specimens. For example, digital specimens can serve as training, validation and test sets for predictive process-based or machine learning algorithms, which are opening new doors of discovery and forecasting. Such sophisticated and powerful analytical approaches depend on FAIR, and on extended digital specimen data being as open as possible. These analytical approaches are derived from biodiversity monitoring outputs that are critically needed by the biodiversity community because they are central to conservation efforts at all levels of analysis, from genetics to species to ecosystem diversity. Second, linking specimens to closely associated specimens (potentially across multiple disparate collections) allows for the coordinated co-analysis of those specimens. For example, linking specimens of parasites/pathogens to specimens of the hosts from which they were collected, allows for a powerful new understanding of coevolution, including pathogen range expansion and shifts to new hosts. Similarly, linking specimens of pollinators, their food plants, and their predators can help untangle complex food webs and multi-trophic interactions. Third, linking derived data to their associated voucher specimens increases information richness, density, and robustness, thereby allowing for novel types of analyses, strengthening validation through linked independent data and thus, improving confidence levels and risk assessment. For example, digital representations of specimens, which incorporate e.g., images, CT scans, or vocalizations, may capture important information that otherwise is lost during preservation, such as coloration or behavior. In addition, permanently linking genetic and genomic data to the specimen of the individual from which they were derived—something that is currently done inconsistently—allows for detailed studies of the connections between genotype and phenotype. Furthermore, persistent links to physical specimens, of additional information and associated transactions, are the building blocks of documentation and preservation of chains of custody. The links will also facilitate data cleaning, updating, as well as maintenance of digital specimens and their derived and associated datasets, with ever-expanding research questions and applied uses materializing over time. The resulting high-quality data resources are needed for fact-based decision-making and forecasting based on monitoring, forensics and prediction workflows in conservation, sustainable management and policy-making. Finally, linking specimens to diverse but associated datasets allows for detailed, often transdisciplinary, studies of topics ranging from local adaptation, through the forces driving range expansion and contraction (critically important to our understanding of the consequences of climate change), and social vectors in disease transmission. A network of extended digital specimens will enable new and critically important research and applications in all of these categories, as well as science and uses that we cannot yet envision.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


2020 ◽  
Author(s):  
Sarah Delanys ◽  
Farah Benamara ◽  
Véronique Moriceau ◽  
François Olivier ◽  
Josiane Mothe

BACKGROUND With the advent of digital technology and specifically user generated contents in social media, new ways emerged for studying possible stigma of people in relation with mental health. Several pieces of work studied the discourse conveyed about psychiatric pathologies on Twitter considering mostly tweets in English and a limited number of psychiatric disorders terms. This paper proposes the first study to analyze the use of a wide range of psychiatric terms in tweets in French. OBJECTIVE Our aim is to study how generic, nosographic and therapeutic psychiatric terms are used on Twitter in French. More specifically, our study has three complementary goals: (1) to analyze the types of psychiatric word use namely medical, misuse, irrelevant, (2) to analyze the polarity conveyed in the tweets that use these terms (positive/negative/neural), and (3) to compare the frequency of these terms to those observed in related work (mainly in English ). METHODS Our study has been conducted on a corpus of tweets in French posted between 01/01/2016 to 12/31/2018 and collected using dedicated keywords. The corpus has been manually annotated by clinical psychiatrists following a multilayer annotation scheme that includes the type of word use and the opinion orientation of the tweet. Two analysis have been performed. First a qualitative analysis to measure the reliability of the produced manual annotation, then a quantitative analysis considering mainly term frequency in each layer and exploring the interactions between them. RESULTS One of the first result is a resource as an annotated dataset . The initial dataset is composed of 22,579 tweets in French containing at least one of the selected psychiatric terms. From this set, experts in psychiatry randomly annotated 3,040 tweets that corresponds to the resource resulting from our work. The second result is the analysis of the annotations; it shows that terms are misused in 45.3% of the tweets and that their associated polarity is negative in 86.2% of the cases. When considering the three types of term use, 59.5% of the tweets are associated to a negative polarity. Misused terms related to psychotic disorders (55.5%) are more frequent to those related to mood disorders (26.5%). CONCLUSIONS Some psychiatric terms are misused in the corpora we studied; which is consistent with the results reported in related work in other languages. Thanks to the great diversity of studied terms, this work highlighted a disparity in the representations and ways of using psychiatric terms. Moreover, our study is important to help psychiatrists to be aware of the term use in new communication media such as social networks which are widely used. This study has the huge advantage to be reproducible thanks to the framework and guidelines we produced; so that the study could be renewed in order to analyze the evolution of term usage. While the newly build dataset is a valuable resource for other analytical studies, it could also serve to train machine learning algorithms to automatically identify stigma in social media.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 347
Author(s):  
Carsten Laukamp ◽  
Andrew Rodger ◽  
Monica LeGras ◽  
Heta Lampinen ◽  
Ian C. Lau ◽  
...  

Reflectance spectroscopy allows cost-effective and rapid mineral characterisation, addressing mineral exploration and mining challenges. Shortwave (SWIR), mid (MIR) and thermal (TIR) infrared reflectance spectra are collected in a wide range of environments and scales, with instrumentation ranging from spaceborne, airborne, field and drill core sensors to IR microscopy. However, interpretation of reflectance spectra is, due to the abundance of potential vibrational modes in mineral assemblages, non-trivial and requires a thorough understanding of the potential factors contributing to the reflectance spectra. In order to close the gap between understanding mineral-diagnostic absorption features and efficient interpretation of reflectance spectra, an up-to-date overview of major vibrational modes of rock-forming minerals in the SWIR, MIR and TIR is provided. A series of scripts are proposed that allow the extraction of the relative intensity or wavelength position of single absorption and other mineral-diagnostic features. Binary discrimination diagrams can assist in rapidly evaluating mineral assemblages, and relative abundance and chemical composition of key vector minerals, in hydrothermal ore deposits. The aim of this contribution is to make geologically relevant information more easily extractable from reflectance spectra, enabling the mineral resources and geoscience communities to realise the full potential of hyperspectral sensing technologies.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


Sign in / Sign up

Export Citation Format

Share Document