scholarly journals High Speed Photographic Detection of Particle Distribution During Aerosol and Smoke Generating Surgical Procedures: Effects of Surgical Site Evacuation

Author(s):  
Kody G Bolk ◽  
Michael E Dunham ◽  
Kevin F Hoffseth ◽  
Jangwook P Jung ◽  
Beatriz M Garcia ◽  
...  

Abstract Objective: Determine the effectiveness of evacuation systems designed to clear bioaerosols and smoke from the surgical field. Study design: High-speed photographic evaluation of aerosol and smoke generated in simulated surgical fields. Materials and methods: Surgical site aerosol clearance was evaluated using a model of the anterior neck and prototypes for surgical site evacuator ports created using 3D printing. A commercially available electrocautery handpiece fitted with an evacuator was tested on animal tissue for smoke clearance. Both systems were connected to a commercial vacuum powered evacuation system. High speed photography was used to record videos of the aerosols and plumes. Fields were recorded with and without evacuation. Results: Efficient aerosol clearance from an open surgical field using an evacuator port is dependent upon the port design, airflow velocity, and placement relative to the aerosol generating site. The size and surface geometry of the surgical field are also important. Surgical smoke generated with electrocautery is cleared from the field by the evacuation enclosure around the handpiece, even at high electrocautery power settings. Except for device noise, there appears to be no reason for using evacuator flow rates below the maximum setting. Conclusions: Bioaerosol and smoke generated during surgery are potential sources of respiratory pathogens and pose a threat to operating room personnel. Surgical site evacuation can significantly reduce the volume of airborne particles in the field but requires careful design and deployment considerations.

In the initial stage of liquid-drop impact, the contact region expands faster than the wave speed in the liquid. This causes compressible behaviour in the liquid, and high transient pressures. High-velocity jetting results when the wave motion in the liquid overtakes the expanding contact edge and moves up the free surface of the drop. The detailed pressure fields in this early time history of impact have been calculated by Lesser ( Proc . R . Soc . Lond . 377, 289 (1981)) for both two and three-dimensional liquid masses and for targets of finite admittance. An important result is that the edge pressures exceed the central ‘water-hammer’ pressure 3ρ 0 CU i and at the time of shock-detachment approach ca . 3ρ 0 CU i . At this stage the edge pressures, for both spherical drops and two-dimensional liquid wedges, depend only on the impact velocity and the instantaneous angle between the liquid and solid surfaces. This suggests that the essential features of the early stage of liquid impact can be usefully studied by producing impacts with two-dimensional liquid wedges, and predicted data for pressures, shock angles and velocities are presented. Experiments are described for producing impacts with preformed shapes by using water-gelatine mixtures and observing the impact events with high-speed photography. The results confirm the main features of the model and give information on edge pressures, jetting, cavitation in the liquid and the effect of the admittance of the solid. The relevance of the results to the damage and erosion of materials subjected to liquid impact is discussed. In particular, it is possible to explain the apparently low damage-threshold of some materials, the form of damage and its development with repeated impact. The study highlights the importance of the detailed surface geometry in the region of contact.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940045 ◽  
Author(s):  
Z. Zhang ◽  
R. Wang ◽  
G. Gou ◽  
H. Chen ◽  
W. Gao

In this paper, we study the droplet transition behavior of narrow gap laser wire filling welding under the condition of changing welding speed and wire feeding speed, and it was observed by high-speed photography. It was found that with the increase of welding speed, the frequency of droplet transfer was reduced and the transition period was prolonged. With the increase of wire feeding speed, the wire was not fully melted and finally inserted into the molten pool.


Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.


Sign in / Sign up

Export Citation Format

Share Document