scholarly journals Microfabricated disk technology: rapid scale up in midbrain organoid generation

2021 ◽  
Author(s):  
Nguyen-Vi Mohamed ◽  
Paula Lepine ◽  
Maria Lacalle-Aurioles ◽  
Julien Sirois ◽  
Meghna Mathur ◽  
...  

By providing a three-dimensional in vitro culture system with key features of the substantia nigra region in the brain, 3D neuronal organoids derived from human induced pluripotent stem cells (iPSCs) provide living neuronal tissue resembling the midbrain region of the brain. However, a major limitation of conventional brain organoid culture is that it is often labor-intensive, requiring highly specialized personnel for moderate throughput. Additionally, the methods published for long-term cultures require time-consuming maintenance to generate brain organoids in large numbers. With the increasing need for human midbrain organoids (hMOs) to better understand and model Parkinson′s disease (PD) in a dish, there is a need to implement new workflows and methods to both generate and maintain hMOs, while minimizing batch to batch variation. In this study, we developed a method with microfabricated disks to scale up the generation of hMOs. This opens up the possibility to generate larger numbers of hMOs, in a manner that minimizes the amount of labor required, while decreasing variability and maintaining the viability of these hMOs over time. Taken together, producing hMOs in this manner opens up the potential for these to be used to further PD studies.

2021 ◽  
Author(s):  
Tatsuya Osaki ◽  
Yoshiho Ikeuchi

AbstractMacroscopic axonal connections in the human brain distribute information and neuronal activity across the brain. Although this complexity previously hindered elucidation of functional connectivity mechanisms, brain organoid technologies have recently provided novel avenues to investigate human brain function by constructing small segments of the brain in vitro. Here, we describe the neural activity of human cerebral organoids reciprocally connected by a bundle of axons. Compared to conventional organoids, connected organoids produced significantly more intense and complex oscillatory activity. Optogenetic manipulations revealed that the connected organoids could re-play and recapitulate over time temporal patterns found in external stimuli, indicating that the connected organoids were able to form and retain temporal memories. Our findings suggest that connected organoids may serve as powerful tools for investigating the roles of macroscopic circuits in the human brain – allowing researchers to dissect cellular functions in three-dimensional in vitro nervous system models in unprecedented ways.


Author(s):  
Yumei Luo ◽  
Mimi Zhang ◽  
Yapei Chen ◽  
Yaoyong Chen ◽  
Detu Zhu

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid international spread has caused the coronavirus disease 2019 (COVID-19) pandemics, which is a global public health crisis. Thus, there is an urgent need to establish biological models to study the pathology of SARS-CoV-2 infection, which not only involves respiratory failure, but also includes dysregulation of other organs and systems, including the brain, heart, liver, intestines, pancreas, kidneys, eyes, and so on. Cellular and organoid models derived from human induced pluripotent stem cells (iPSCs) are ideal tools for in vitro simulation of viral life cycles and drug screening to prevent the reemergence of coronavirus. These iPSC-derived models could recapitulate the functions and physiology of various human cell types and assemble the complex microenvironments similar with those in the human organs; therefore, they can improve the study efficiency of viral infection mechanisms, mimic the natural host-virus interaction, and be suited for long-term experiments. In this review, we focus on the application of in vitro iPSC-derived cellular and organoid models in COVID-19 studies.


2021 ◽  
pp. 002215542110253
Author(s):  
Ida Biunno ◽  
Emanuela Paiola ◽  
Pasquale De Blasio

“Multi-Omics” technologies have contributed greatly to the understanding of various diseases by enabling researchers to accurately and rapidly investigate the molecular circuitry that connects cellular systems. The tissue-engineered, three-dimensional (3D), in vitro disease model “organoid” integrates the “omics” results in a model system, elucidating the complex links between genotype and phenotype. These 3D structures have been used to model cancer, infectious disease, toxicity, and neurological disorders. Here, we describe the advantage of using the tissue microarray (TMA) technology to analyze human-induced pluripotent stem cell–derived cerebral organoids. Compared with the conventional processing of individual samples, sectioning and staining of TMA slides are faster and can be automated, decreasing labor and reagent costs. The TMA technology faithfully captures cell morphology variations and detects specific biomarkers. The use of this technology can scale up organoid research results in at least two ways: (1) in the number of specimens that can be analyzed simultaneously and (2) in the number of consecutive sections that can be produced for analysis with different probes and antibodies.


2020 ◽  
Author(s):  
Raleigh M. Linville ◽  
Diego Arevalo ◽  
Joanna C. Maressa ◽  
Nan Zhao ◽  
Peter Searson

Abstract Background: During brain development, chemical cues released by developing neurons, cellular signaling with pericytes, and mechanical cues within the brain extracellular matrix (ECM) promote angiogenesis of brain microvascular endothelial cells (BMECs). Angiogenesis is also associated with diseases of the brain due to pathological chemical, cellular, and mechanical signaling. Existing in vitro and in vivo models of brain angiogenesis have key limitations. Methods: Here, we develop a high-throughput in vitro blood-brain barrier (BBB) bead assay of brain angiogenesis utilizing 150 μm diameter beads coated with induced pluripotent stem-cell (iPSC)-derived human BMECs (dhBMECs). After embedding the beads within a 3D matrix, we introduce various chemical cues and extracellular matrix components to explore their effects on angiogenic behavior. Based on the results from the bead assay, we generate a multi-scale model of the human cerebrovasculature within perfusable three-dimensional tissue-engineered blood-brain barrier microvessels.Results: A sprouting phenotype is optimized in confluent monolayers of dhBMECs using chemical treatment with vascular endothelial growth factor (VEGF) and wnt ligands, and the inclusion of pro-angiogenic ECM components. As a proof-of-principle that the bead angiogenesis assay can be applied to study pathological angiogenesis, we show that oxidative stress can exert concentration-dependent effects on angiogenesis. Finally, we demonstrate the formation of a hierarchical microvascular model of the human blood-brain barrier displaying key structural hallmarks. Conclusions: We develop two in vitro models of brain angiogenesis: the BBB bead assay and the tissue-engineered BBB microvessel model. These platforms provide a tool kit for studies of physiological and pathological brain angiogenesis, with key advantages over existing two-dimensional models.


Author(s):  
Raj Bose ◽  
Soumyabrata Banerjee ◽  
Gary L. Dunbar

Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi-Fan Wang ◽  
Cong Liu ◽  
Peng-Fei Xu

AbstractOrganoid has become a novel in vitro model to research human development and relevant disorders in recent years. With many improvements on the culture protocols, current brain organoids could self-organize into a complicated three-dimensional organization that mimics most of the features of the real human brain at the molecular, cellular, and further physiological level. However, lacking positional information, an important characteristic conveyed by gradients of signaling molecules called morphogens, leads to the deficiency of spatiotemporally regulated cell arrangements and cell–cell interactions in the brain organoid development. In this review, we will overview the role of morphogen both in the vertebrate neural development in vivo as well as the brain organoid culture in vitro, the strategies to apply morphogen concentration gradients in the organoid system and future perspectives of the brain organoid technology.


2021 ◽  
Author(s):  
Marine A Krzisch ◽  
Hao A Wu ◽  
Bingbing Yuan ◽  
Troy W. Whitfield ◽  
X. Shawn Liu ◽  
...  

Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. Here, we co-injected neural precursor cells (NPCs) from FXS patient-derived and corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Single-cell RNA sequencing of transplanted cells revealed upregulated excitatory synaptic transmission and neuronal differentiation pathways in FXS neurons. Immunofluorescence analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, increased percentages of Arc- and Egr1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons pointed to an increase in synaptic activity and synaptic strength as compared to control. This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3D context, and could be used to test new therapeutic compounds correcting neuronal development defects in FXS.


2021 ◽  
Author(s):  
Waseem K. Raja ◽  
Esther Neves ◽  
Christopher Burke ◽  
Xin Jiang ◽  
Ping Xu ◽  
...  

There are currently no preventive or disease-modifying therapies for Parkinson′s Disease (PD). Failures in clinical trials necessitate a re-evaluation of existing pre-clinical models in order to adopt systems that better recapitulate underlying disease mechanisms and better predict clinical outcomes. In recent years, models utilizing patient-derived induced pluripotent stem cells (iPSCs) have emerged as attractive models to recapitulate disease-relevant neuropathology in vitro without exogenous overexpression of disease-related pathologic proteins. Here, we utilized iPSCs derived from patients with early-onset PD and dementia phenotypes that harbored either a point mutation (A53T) or multiplication at the Alpha-synuclein/SNCA gene locus. We generated a three-dimensional (3D) cortical neurosphere culture model to better mimic the tissue microenvironment of the brain. We extensively characterized the differentiation process using quantitative PCR, Western immunoblotting, and immunofluorescence staining. Differentiation and aging of the neurospheres revealed alterations in fatty acid profiles and elevated total and pathogenic phospho-Alpha-synuclein levels in both A53T and the triplication lines compared to their isogenic control lines. Furthermore, treatment of the neurospheres with a small molecule inhibitor of stearoyl CoA desaturase (SCD) attenuated the protein accumulation and aberrant fatty acid profile phenotypes. Our findings suggest that the 3D cortical neurosphere model is a useful tool to interrogate targets for PD and amenable to test small molecule therapeutics.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


Sign in / Sign up

Export Citation Format

Share Document