scholarly journals Targeted high-resolution taxonomic identification of Bifidobacterium longum subsp. infantis using human milk oligosaccharide metabolizing genes

2021 ◽  
Author(s):  
Lauren Tso ◽  
Kevin S Bonham ◽  
Alyssa Fishbein ◽  
Sophie Rowland ◽  
Vanja Klepac-Ceraj ◽  
...  

Bifidobacterium longum subsp. infantis (B. infantis) is one of few microorganisms capable of metabolizing human breast milk and is a pioneer colonizer in the guts of breastfed infants. One current challenge is differentiating B. infantis from its close relatives, B. longum and B. suis, by molecular methods. These two organisms are classified in the same species group as B. infantis but do not share the ability to metabolize human milk oligosaccharides (HMOs). Here, we compared HMO-metabolizing genes across different Bifidobacterium genomes to develop B. infantis specific primers and determine if they alone can be used to quickly characterize B. infantis with shotgun metagenomic sequencing data. We showed that B. infantis is uniquely identified by the presence of five HMO-metabolizing gene clusters, used this characterization to test for its prevalence in infants, and validated the results using the B. infantis-specific primers. By examining stool samples from a cohort of US children and pregnant women using shotgun metagenomic sequencing, we observed that only 18 of 204 (8.8%) of children under 2 years old harbored B. infantis. These results highlight the importance of developing and improving approaches to identify B. infantis. A more accurate characterization may provide insights into regional differences of B. infantis prevalence in infant gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2833
Author(s):  
Lauren Tso ◽  
Kevin S. Bonham ◽  
Alyssa Fishbein ◽  
Sophie Rowland ◽  
Vanja Klepac-Ceraj

Bifidobacterium longum subsp. infantis (B. infantis) is one of a few microorganisms capable of metabolizing human breast milk and is a pioneer colonizer in the guts of breastfed infants. One current challenge is differentiating B. infantis from its close relatives, B. longum and B. suis. All three organisms are classified in the same species group but only B. infantis can metabolize human milk oligosaccharides (HMOs). We compared HMO-metabolizing genes across different Bifidobacterium genomes and developed B. infantis-specific primers to determine if the genes alone or the primers can be used to quickly characterize B. infantis. We showed that B. infantis is uniquely identified by the presence of five HMO-metabolizing gene clusters, tested for its prevalence in infant gut metagenomes, and validated the results using the B. infantis-specific primers. We observed that only 15 of 203 (7.4%) children under 2 years old from a cohort of US children harbored B. infantis. These results highlight the importance of developing and improving approaches to identify B. infantis. A more accurate characterization may provide insights into regional differences of B. infantis prevalence in infant gut microbiota.



Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3247 ◽  
Author(s):  
Rebbeca M. Duar ◽  
Giorgio Casaburi ◽  
Ryan D. Mitchell ◽  
Lindsey N.C. Scofield ◽  
Camila A. Ortega Ramirez ◽  
...  

Dysbiosis is associated with acute and long-term consequences for neonates. Probiotics can be effective in limiting the growth of bacteria associated with dysbiosis and promoting the healthy development of the infant microbiome. Given its adaptation to the infant gut, and promising data from animal and in vitro models, Bifidobacterium longum subsp. infantis is an attractive candidate for use in infant probiotics. However, strain-level differences in the ability of commercialized strains to utilize human milk oligosaccharides (HMOs) may have implications in the performance of strains in the infant gut. In this study, we characterized twelve B. infantis probiotic strains and identified two main variants in one of the HMO utilization gene clusters. Some strains possessed the full repertoire of HMO utilization genes (H5-positive strains), while H5-negative strains lack an ABC-type transporter known to bind core HMO structures. H5-positive strains achieved significantly superior growth on lacto-N-tetraose and lacto-N-neotetraose. In vitro, H5-positive strains had a significant fitness advantage over H5-negative strains, which was also observed in vivo in breastfed infants. This work provides evidence of the functional implications of genetic differences among B. infantis strains and highlights that genotype and HMO utilization phenotype should be considered when selecting a strain for probiotic use in infants.



2018 ◽  
Vol 57 (2) ◽  
Author(s):  
Qun Yan ◽  
Yu Mi Wi ◽  
Matthew J. Thoendel ◽  
Yash S. Raval ◽  
Kerryl E. Greenwood-Quaintance ◽  
...  

ABSTRACT We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.



2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kory J Dees ◽  
Hyunmin Koo ◽  
J Fraser Humphreys ◽  
Joseph A Hakim ◽  
David K Crossman ◽  
...  

Abstract Background Although immunotherapy works well in glioblastoma (GBM) preclinical mouse models, the therapy has not demonstrated efficacy in humans. To address this anomaly, we developed a novel humanized microbiome (HuM) model to study the response to immunotherapy in a preclinical mouse model of GBM. Methods We used 5 healthy human donors for fecal transplantation of gnotobiotic mice. After the transplanted microbiomes stabilized, the mice were bred to generate 5 independent humanized mouse lines (HuM1-HuM5). Results Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome with significant differences in diversity and microbial composition among HuM1-HuM5 lines. All HuM mouse lines were susceptible to GBM transplantation, and exhibited similar median survival ranging from 19 to 26 days. Interestingly, we found that HuM lines responded differently to the immune checkpoint inhibitor anti-PD-1. Specifically, we demonstrate that HuM1, HuM4, and HuM5 mice are nonresponders to anti-PD-1, while HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls. Bray-Curtis cluster analysis of the 5 HuM gut microbial communities revealed that responders HuM2 and HuM3 were closely related, and detailed taxonomic comparison analysis revealed that Bacteroides cellulosilyticus was commonly found in HuM2 and HuM3 with high abundances. Conclusions The results of our study establish the utility of humanized microbiome mice as avatars to delineate features of the host interaction with gut microbial communities needed for effective immunotherapy against GBM.



2020 ◽  
Author(s):  
Caroline Ivanne Le Roy ◽  
Alexander Kurilshikov ◽  
Emily Leeming ◽  
Alessia Visconti ◽  
Ruth Bowyer ◽  
...  

Abstract Background: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. Results: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17±0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18±11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41±0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30±0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed that increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation.Conclusions: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).



mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Steven A. Frese ◽  
Andra A. Hutton ◽  
Lindsey N. Contreras ◽  
Claire A. Shaw ◽  
Michelle C. Palumbo ◽  
...  

ABSTRACT The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function. Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.



Data in Brief ◽  
2020 ◽  
Vol 31 ◽  
pp. 105831
Author(s):  
Olubukola Oluranti Babalola ◽  
Temitayo Tosin Alawiye ◽  
Carlos Rodriguez Lopez ◽  
Ayansina Segun Ayangbenro


2020 ◽  
Author(s):  
Caroline Ivanne Le Roy ◽  
Alexander Kurilshikov ◽  
Emily Leeming ◽  
Alessia Visconti ◽  
Ruth Bowyer ◽  
...  

Abstract Background: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. Results: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17±0.34; P = 2.72x10 -10 ) and improved metabolic health characterised by reduced visceral fat (beta = -28.18±11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41±0.051; P = 6.14x10 -12 ) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30±0.052; P = 1.49x10 -8 ) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LL-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed that increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. Conclusions: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species ( i.e. S. thermophilus and B. lactis ).



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Min Yap ◽  
Conor Feehily ◽  
Calum J. Walsh ◽  
Mark Fenelon ◽  
Eileen F. Murphy ◽  
...  

AbstractShotgun metagenomic sequencing is a valuable tool for the taxonomic and functional profiling of microbial communities. However, this approach is challenging in samples, such as milk, where a low microbial abundance, combined with high levels of host DNA, result in inefficient and uneconomical sequencing. Here we evaluate approaches to deplete host DNA or enrich microbial DNA prior to sequencing using three commercially available kits. We compared the percentage of microbial reads obtained from each kit after shotgun metagenomic sequencing. Using bovine and human milk samples, we determined that host depletion with the MolYsis complete5 kit significantly improved microbial sequencing depth compared to other approaches tested. Importantly, no biases were introduced. Additionally, the increased microbial sequencing depth allowed for further characterization of the microbiome through the generation of metagenome-assembled genomes (MAGs). Furthermore, with the use of a mock community, we compared three common classifiers and determined that Kraken2 was the optimal classifier for these samples. This evaluation shows that microbiome analysis can be performed on both bovine and human milk samples at a much greater resolution without the need for more expensive deep-sequencing approaches.



2008 ◽  
Vol 74 (15) ◽  
pp. 4686-4694 ◽  
Author(s):  
Rina González ◽  
Eline S. Klaassens ◽  
Erja Malinen ◽  
Willem M. de Vos ◽  
Elaine E. Vaughan

ABSTRACT In order to gain insight into the effects of human breast milk on the development of the intestinal bifidobacteria and associated health effects, the transcriptome of Bifidobacterium longum LMG 13197 grown in breast milk and formula milk containing galactooligosaccharides (GOS) and long-chain fructooligosaccharides was compared to that obtained in a semisynthetic medium with glucose. Total RNA was isolated from exponentially growing cells and hybridized to a clone library-based microarray. Inserts of clones with significant hybridization signals were sequenced and identified. The B. longum transcriptomes obtained during growth on human and formula milk were more similar to each other than to that obtained from growth in semisynthetic medium with glucose. Remarkably, there were only a few genes implicated in carbohydrate metabolism that were similarly upregulated during growth in both human and formula milk although oligosaccharides were added to the formula. Common highly upregulated genes notably included putative genes for cell surface type 2 glycoprotein-binding fimbriae that are implicated in attachment and colonization in the intestine. Genes involved in carbohydrate metabolism formed the dominant group specifically upregulated in breast milk and included putative genes for N-acetylglucosamine degradation and for metabolism of mucin and human milk oligosaccharides via the galactose/lacto-N-biose gene cluster. This supports the notion that the bifidogenic effect of human milk is to a great extent based on its oligosaccharides. The transcriptional effect of semisynthetic medium containing GOS, which, like human milk, contains a large amount of lactose and galactose, on the B. longum transcriptome was also studied and revealed substantial similarity with carbohydrate-utilization genes upregulated during growth in human milk. This knowledge provides leads to optimizing formula milk to better simulate the observed bifidogenic effects of human breast milk.



Sign in / Sign up

Export Citation Format

Share Document