scholarly journals p53 mutations exhibit sex specific gain-of-function activity in gliomagenesis

2021 ◽  
Author(s):  
Nathan C Rockwell ◽  
Wei Yang ◽  
Nicole Warrington ◽  
Malachi Griffith ◽  
Obi L Griffith ◽  
...  

The tumor suppressor TP53 is the most frequently mutated gene in cancer. Most TP53 mutations are missense mutations in the DNA-binding domain, which in addition to loss of canonical p53 activity, frequently confer gain-of-function (GOF) aberrant transcriptional activity through mutant p53 localization to non-canonical genes. GOF phenotypes differ by mutation and cell identity and are reported to include increased proliferation, migration, metabolic reprogramming, and therapy resistance. We found that several recurring p53 mutations exhibit a sex-bias in patients with glioblastoma (GBM). In vitro and in vivo analysis of three mutations, p53R172H, p53Y202C, and p53Y217C revealed sex differences in each mutation′s ability to transform primary mouse astrocytes. p53R172H exhibited a far greater ability to transform female astrocytes than males, p53Y202C transformed both male and female astrocytes with a small male bias, and p53Y217C only exhibited GOF transformation effects in male astrocytes. These phenotypic differences reflect an interaction between sex and GOF mutation to drive unique gene expression patterns in cancer pathways. We found that mutant p53 exhibits sex and mutation specific aberrant genomic localization to the transcriptional start sites of upregulated genes, whose promoter regions were enriched for different sets of transcription factor DNA-binding motifs. Together, our data establish a novel paradigm for sex specific mutant p53 GOF activity in GBM with implications for all cancer.

2021 ◽  
Vol 1 (3) ◽  
pp. 148-163
Author(s):  
Nathan C. Rockwell ◽  
Wei Yang ◽  
Nicole M. Warrington ◽  
Max V. Staller ◽  
Malachi Griffith ◽  
...  

In cancer, missense mutations in the DNA-binding domain of TP53 are common. They abrogate canonical p53 activity and frequently confer gain-of-oncogenic function (GOF) through localization of transcriptionally active mutant p53 to noncanonical genes. We found that several recurring p53 mutations exhibit a sex difference in frequency in patients with glioblastoma (GBM). In vitro and in vivo analysis of three mutations, p53R172H, p53Y202C, and p53Y217C, revealed unique interactions between cellular sex and p53 GOF mutations that determined each mutation's ability to transform male versus female primary mouse astrocytes. These phenotypic differences were correlated with sex- and p53 mutation–specific patterns of genomic localization to the transcriptional start sites of upregulated genes belonging to core cancer pathways. The promoter regions of these genes exhibited a sex difference in enrichment for different transcription factor DNA-binding motifs. Together, our data establish a novel mechanism for sex-specific mutant p53 GOF activity in GBM with implications for all cancer. Significance: Sex differences in cancer, including glioblastoma, have been observed in both incidence and outcome. We reveal that TP53, the most commonly mutated gene in cancer, contributes to sex differences through differential GOF activity. This discovery has critical implications for our understanding of p53 mutations and the importance of sex as a biological variable.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii20-ii20
Author(s):  
Nathan Rockwell ◽  
Nicole Warrington ◽  
Joshua Rubin

Abstract Sex differences in malignant brain tumors are well-established: Males exhibit greater incidence and poorer survival. Understanding the biology behind these sex differences requires investigation of the pathways known to drive gliomagenesis. The transcription factor TP53 (p53) is one of the most commonly mutated genes in glioblastoma. Most p53 mutations are missense mutations in the DNA-binding domain that lead to the expression of a full length mutant p53 protein. These mutations can endow p53 with oncogenic gains-of-function through aberrant DNA binding and regulation of noncanonical cancer-promoting target genes. Previously, we analyzed patient mutation data and identified six p53 mutations with sex differences in prevalence. In this study, we developed an in vitro mutant p53 glioma model to investigate the sex specific effects of three p53 point mutations: R175H, Y205C, and Y220C (Mm R172H, Y202C, and Y217C respectively). Male and female astrocytes isolated from p53flox/- mouse pups were transduced with a retrovirus expressing mutant p53, followed by a lentivirus expressing CRE recombinase to remove the endogenous WTp53. We then assessed cell proliferation, clonogenicity, and in vivo tumorigenesis in these cells. All three mutations assayed displayed sex differences in proliferation, with male cells overexpressing p53:Y202C and p53:Y217C growing faster than female cells, and female cells overexpressing p53:R172H growing faster than male cells. Male Y202C and Y217C expressing astrocytes also exhibited a trend toward greater clonogenicity compared to female astrocytes. This observation is supported by higher expression of the stem cell markers SOX2 and NESTIN in the male cells. We performed parallel flank injections of male and female astrocytes expressing each mutation or p53 KO. Only male astrocytes expressing p53:Y202C or p53:Y217C and female astrocytes expressing p53:R172H mutation were able to form tumors in vivo. Together, these data support a sex specific gain-of-function phenotype for three different p53 mutations observed in glioma.


2011 ◽  
Vol 286 (18) ◽  
pp. 16218-16228 ◽  
Author(s):  
Yanhong Zhang ◽  
Wensheng Yan ◽  
Xinbin Chen

Mutant p53 is not only deficient in tumor suppression but also acquires additional activity, called gain of function. Mutant p53 gain of function is recapitulated in knock-in mice that carry one null allele and one mutant allele of the p53 gene. These knock-in mice develop aggressive tumors compared with p53-null mice. Recently, we and others showed that tumor cells carrying a mutant p53 are addicted to the mutant for cell survival and resistance to DNA damage. To further define mutant p53 gain of function, we used the MCF-10A three-dimensional model of mammary morphogenesis. MCF-10A cells in three-dimensional culture undergo a series of morphological changes and form polarized and growth-arrested spheroids with hollow lumen, which resembles normal glandular architectures in vivo. Here, we found that endogenous wild-type p53 in MCF-10A cells was not required for acinus formation, but knockdown of endogenous wild-type p53 (p53-KD) led to partial clearance of cells in the lumen due to decreased apoptosis. Consistent with this, p53-KD altered expression patterns of the cell adhesion molecule E-cadherin, the cytoskeletal marker β-catenin, and the extracellular matrix protein laminin V. We also found that ectopic expression of the mutant G245S led to a phenotype similar to p53-KD, whereas a combination of ectopic expression of siRNA-resistant G245S with p53-KD led to a less cleared lumen. In contrast, ectopic expression of mutant R248W, R175H, and R273H disrupted normal acinus architectures with filled lumen and led to formation of irregular and multiacinus structures regardless of p53-KD. In addition, these mutants altered normal expression patterns and/or levels of E-cadherin, β-catenin, laminin V, and tight junction marker ZO-1. Furthermore, epithelial-to-mesenchymal transitions (EMT) markers, Snail, Slug, and Twist, were highly induced by mutant p53 and/or p53-KD. Together, we postulate that EMT represents a mutant p53 gain of function and mutant p53 alters cell polarity via EMT.


1992 ◽  
Vol 12 (12) ◽  
pp. 5581-5592 ◽  
Author(s):  
E Shaulian ◽  
A Zauberman ◽  
D Ginsberg ◽  
M Oren

Mutations in the p53 gene are most frequent in cancer. Many p53 mutants possess transforming activity in vitro. In cells transformed by such mutants, the mutant protein is oligomerized with endogenous cell p53. To determine the relevance of oligomerization for transformation, miniproteins containing C-terminal portions of p53 were generated. These miniproteins, although carrying no point mutation, transformed at least as efficiently as full-length mutant p53. Transforming activity was coupled with the ability to oligomerize with wild-type p53, as well as with the ability to abrogate sequence-specific DNA binding by coexpressed wild-type p53. These findings suggest that p53-mediated transformation may operate through a dominant negative mechanism, involving the generation of DNA binding-incompetent oligomers.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


Blood ◽  
2012 ◽  
Vol 120 (19) ◽  
pp. 4018-4027 ◽  
Author(s):  
Constanze Breitinger ◽  
Emanuel Maethner ◽  
Maria-Paz Garcia-Cuellar ◽  
Robert K. Slany

Abstract HOX proteins are widely involved in hematopoietic development. These transcription factors combine a conserved DNA-binding homeobox with a divergent N-terminus that mediates interaction with variable cofactors. The resulting combinatorial diversity is thought to be responsible for mammalian HOX specificity. Contrasting this proposed mechanism for normal HOX function, here we demonstrate that, in the context of hematopoietic immortalization and leukemogenesis, individual HOX properties are governed almost exclusively by the homeodomain. Swap experiments between HOXA1 and HOXA9, 2 members of nonrelated paralog groups, revealed that gene expression patterns of HOX transformed cells in vitro are determined by the nature of the homeodomain. Similar results were seen in vivo during HOX-mediated leukemogenesis. An exchange of the homeodomains was sufficient to convert the slow, low-penetrance phenotype of HOXA1-induced leukemia to the aggressive fast-acting disease elicited by HOXA9 and vice versa. Mutation and deletion studies identified several subregions within the DNA binding domain responsible for paralog specificity. Previously defined binding sites for PBX cofactors within the exchangeable, nonhomeobox segment were dispensable for in vitro oncogenic HOX activity but affected in vivo disease development. The transcriptional activator domain shared by HOXA1 and HOXA9 at the very N-terminus proved essential for all transformation.


Author(s):  
George K. Annor ◽  
Nour Elshabassy ◽  
Devon Lundine ◽  
Don-Gerard Conde ◽  
Gu Xiao ◽  
...  

The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.


2020 ◽  
pp. jbc.RA120.014749
Author(s):  
Xin Tong ◽  
Dandan Xu ◽  
Rama K. Mishra ◽  
Ryan D Jones ◽  
Leyu Sun ◽  
...  

The TP53 gene is the most frequently mutated gene in human cancers, and the majority of TP53 mutations are missense mutations. As a result, these mutant p53 (mutp53) either directly lose wild-type p53 (wtp53) tumor suppressor function or exhibit a dominant negative effect over wtp53. In addition, some mutp53 have acquired new oncogenic function (gain of function). Therefore, targeting mutp53 for its degradation, may serve as a promising strategy for cancer prevention and therapy. Based on our previous finding that farnesylated DNAJA1 is a crucial chaperone in maintaining mutp53 stabilization, and by using an in silico approach, we built 3-D homology models of human DNAJA1 and mutp53R175H proteins, identified the interacting pocket in the DNAJA1-mutp53R175H complex, and found one critical druggable small molecule binding  site in the DNAJA1 glycine/phenylalanine rich region. We confirmed that the interacting pocket in the DNAJA1-mutp53R175H complex was crucial for stabilizing mutp53R175H using a site-directed mutagenesis approach. We further screened a drug-like library to identify a promising small molecule hit (GY1-22) against the interacting pocket in DNAJA1-mutp53R175H complex. The GY1-22 compound displayed an effective activity against DNAJA1-mutp53R175H complex. Treatment with GY1-22 significantly reduced mutp53 protein levels, enhanced Waf1p21 expression, suppressed cyclin D1 expression, and inhibited mutp53-driven pancreatic cancer growth both in vitro and in vivo. Together, our results indicate that the interacting pocket in the DNAJA1-mutp53R175H complex is critical for mutp53’s stability and oncogenic function, and DNAJA1 is a robust therapeutic target for developing the efficient small molecule inhibitors against oncogenic mutp53.


1996 ◽  
Vol 16 (3) ◽  
pp. 932-942 ◽  
Author(s):  
G Golling ◽  
L Li ◽  
M Pepling ◽  
M Stebbins ◽  
J P Gergen

The Drosophila runt gene is the founding member of the Runt domain family of transcriptional regulators. Mammalian Runt domain genes encode the alpha subunit of the heterometric DNA-binding factor PEBP2/CBF. The unrelated PEBP2/CBF beta protein interacts with the Runt domain to increase its affinity for DNA. The conserved ability of the Drosophila Runt protein to respond to the stimulating effect of mammalian PEBP2/CBF beta indicated that flies were likely to have a homologous beta protein. Using the yeast two-hybrid system to isolate cDNAs for Runt-interacting proteins, we identified two Drosophila genes, referred to as Brother and Big-brother, that have substantial sequence homology with PEBP2/CBF beta. Yeast two-hybrid experiments as well as in vitro DNA-binding studies confirmed the functional homology of the Brother, Big-brother, and PEBP2/CBF beta proteins and demonstrated that the conserved regions of the Runt and Brother proteins are required for their heterodimeric interaction. The DNA-bending properties of Runt domain proteins in the presence and absence of their partners were also examined. Our results show that Runt domain proteins bend DNA and that this bending is influenced by Brother protein family members, supporting the idea that heterodimerization is associated with a conformational change in the Runt domain. Analysis of expression patterns in Drosophila embryos revealed that Brother and Big-brother are likely to interact with runt in vivo and further suggested that the activity of these proteins is not restricted to their interaction with Runt.


1992 ◽  
Vol 12 (12) ◽  
pp. 5581-5592 ◽  
Author(s):  
E Shaulian ◽  
A Zauberman ◽  
D Ginsberg ◽  
M Oren

Mutations in the p53 gene are most frequent in cancer. Many p53 mutants possess transforming activity in vitro. In cells transformed by such mutants, the mutant protein is oligomerized with endogenous cell p53. To determine the relevance of oligomerization for transformation, miniproteins containing C-terminal portions of p53 were generated. These miniproteins, although carrying no point mutation, transformed at least as efficiently as full-length mutant p53. Transforming activity was coupled with the ability to oligomerize with wild-type p53, as well as with the ability to abrogate sequence-specific DNA binding by coexpressed wild-type p53. These findings suggest that p53-mediated transformation may operate through a dominant negative mechanism, involving the generation of DNA binding-incompetent oligomers.


Sign in / Sign up

Export Citation Format

Share Document