scholarly journals Oligomerization of Mutant p53 R273H is not Required for Gain-of-Function Chromatin Associated Activities

Author(s):  
George K. Annor ◽  
Nour Elshabassy ◽  
Devon Lundine ◽  
Don-Gerard Conde ◽  
Gu Xiao ◽  
...  

The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.

2021 ◽  
Author(s):  
Nathan C Rockwell ◽  
Wei Yang ◽  
Nicole Warrington ◽  
Malachi Griffith ◽  
Obi L Griffith ◽  
...  

The tumor suppressor TP53 is the most frequently mutated gene in cancer. Most TP53 mutations are missense mutations in the DNA-binding domain, which in addition to loss of canonical p53 activity, frequently confer gain-of-function (GOF) aberrant transcriptional activity through mutant p53 localization to non-canonical genes. GOF phenotypes differ by mutation and cell identity and are reported to include increased proliferation, migration, metabolic reprogramming, and therapy resistance. We found that several recurring p53 mutations exhibit a sex-bias in patients with glioblastoma (GBM). In vitro and in vivo analysis of three mutations, p53R172H, p53Y202C, and p53Y217C revealed sex differences in each mutation′s ability to transform primary mouse astrocytes. p53R172H exhibited a far greater ability to transform female astrocytes than males, p53Y202C transformed both male and female astrocytes with a small male bias, and p53Y217C only exhibited GOF transformation effects in male astrocytes. These phenotypic differences reflect an interaction between sex and GOF mutation to drive unique gene expression patterns in cancer pathways. We found that mutant p53 exhibits sex and mutation specific aberrant genomic localization to the transcriptional start sites of upregulated genes, whose promoter regions were enriched for different sets of transcription factor DNA-binding motifs. Together, our data establish a novel paradigm for sex specific mutant p53 GOF activity in GBM with implications for all cancer.


2020 ◽  
pp. jbc.RA120.014749
Author(s):  
Xin Tong ◽  
Dandan Xu ◽  
Rama K. Mishra ◽  
Ryan D Jones ◽  
Leyu Sun ◽  
...  

The TP53 gene is the most frequently mutated gene in human cancers, and the majority of TP53 mutations are missense mutations. As a result, these mutant p53 (mutp53) either directly lose wild-type p53 (wtp53) tumor suppressor function or exhibit a dominant negative effect over wtp53. In addition, some mutp53 have acquired new oncogenic function (gain of function). Therefore, targeting mutp53 for its degradation, may serve as a promising strategy for cancer prevention and therapy. Based on our previous finding that farnesylated DNAJA1 is a crucial chaperone in maintaining mutp53 stabilization, and by using an in silico approach, we built 3-D homology models of human DNAJA1 and mutp53R175H proteins, identified the interacting pocket in the DNAJA1-mutp53R175H complex, and found one critical druggable small molecule binding  site in the DNAJA1 glycine/phenylalanine rich region. We confirmed that the interacting pocket in the DNAJA1-mutp53R175H complex was crucial for stabilizing mutp53R175H using a site-directed mutagenesis approach. We further screened a drug-like library to identify a promising small molecule hit (GY1-22) against the interacting pocket in DNAJA1-mutp53R175H complex. The GY1-22 compound displayed an effective activity against DNAJA1-mutp53R175H complex. Treatment with GY1-22 significantly reduced mutp53 protein levels, enhanced Waf1p21 expression, suppressed cyclin D1 expression, and inhibited mutp53-driven pancreatic cancer growth both in vitro and in vivo. Together, our results indicate that the interacting pocket in the DNAJA1-mutp53R175H complex is critical for mutp53’s stability and oncogenic function, and DNAJA1 is a robust therapeutic target for developing the efficient small molecule inhibitors against oncogenic mutp53.


2020 ◽  
Author(s):  
Saskia Hoffmann ◽  
Satyakrishna Pentakota ◽  
Andreas Mund ◽  
Peter Haahr ◽  
Fabian Coscia ◽  
...  

AbstractDominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome 1–3, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome 4, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.


Author(s):  
Joanna E Zawacka-Pankau

p53 and p73 are critical tumor suppressors inactivated in human cancers through various mechanisms. Owing to high structural homology, the proteins share many joined functions and recognize the same set of genes involved in apoptosis and cell cycle regulation. p53 is known as the ‘guardian of the genome’ and forms a critical barrier against cancer development and progression. It is mutated in more than 50% of all human cancers and the germline mutations in TP53 predispose to the early onset of multiple tumors in Li-Fraumeni Syndrome (LFS), the inherited cancer predisposition. Despite the ongoing effort, the treatment of cancers harbouring mutant p53 still remains challenging due to late diagnoses and the treatment-related toxicity and marginal benefit upon approval of new therapies. Presently, the efforts focus on activating p53 exclusively, neglecting the potential of the restoration of the p73 protein in tumors. Taken that several small molecules activating wild-type p53 have failed in clinical trials, and mutant p53 reactivating drugs have not been approved yet, there is a pressing need to develop new treatments activating p53 proteins. This review outlines the still despised therapeutic avenue, drug repurposing, which brings hope for the efficient reinstatement of the p53 protein family for improved cancer therapy.


Cell ◽  
2004 ◽  
Vol 119 (6) ◽  
pp. 847-860 ◽  
Author(s):  
Kenneth P. Olive ◽  
David A. Tuveson ◽  
Zachary C. Ruhe ◽  
Bob Yin ◽  
Nicholas A. Willis ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 747-762
Author(s):  
Andrea Penton ◽  
Andreas Wodarz ◽  
Roel Nusse

Abstract Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity. To learn more about how Dsh can discriminate between these functions, we performed genetic screens to isolate additional dsh alleles and we examined the potential role of protein phosphorylation by site-directed mutagenesis. We identified two alleles with point mutations in the Dsh DEP domain that specifically disrupt planar polarity signaling. When positioned in the structure of the DEP domain, these mutations are located close to each other and to a previously identified planar polarity mutation. In addition to the requirement for the DEP domain, we found that a cluster of potential phosphorylation sites in a binding domain for the protein kinase PAR-1 is also essential for planar polarity signaling. To identify regions of dsh that are necessary for Wg signaling, we screened for mutations that modified a GMR-GAL4;UAS-dsh overexpression phenotype in the eye. We recovered many alleles of the transgene containing missense mutations, including mutations in the DIX domain and in the DEP domain, the latter group mapping separately from the planar polarity mutations. In addition, several transgenes had mutations within a domain containing a consensus sequence for an SH3-binding protein. We also recovered second-site-suppressing mutations in axin, mapping at a region that may specifically interact with overexpressed Dsh.


1996 ◽  
Vol 76 (02) ◽  
pp. 253-257 ◽  
Author(s):  
Takeshi Hagiwara ◽  
Hiroshi Inaba ◽  
Shinichi Yoshida ◽  
Keiko Nagaizumi ◽  
Morio Arai ◽  
...  

SummaryGenetic materials from 16 unrelated Japanese patients with von Willebrand disease (vWD) were analyzed for mutations. Exon 28 of the von Willebrand factor (vWF) gene, where point mutations have been found most frequent, was screened by various restriction-enzyme analyses. Six patients were observed to have abnormal restriction patterns. By sequence analyses of the polymerase chain-reaction products, we identified a homozygous R1308C missense mutation in a patient with type 2B vWD; R1597W, R1597Q, G1609R and G1672R missense mutations in five patients with type 2A; and a G1659ter nonsense mutation in a patient with type 3 vWD. The G1672R was a novel missense mutation of the carboxyl-terminal end of the A2 domain. In addition, we detected an A/C polymorphism at nucleotide 4915 with HaeIII. There was no particular linkage disequilibrium of the A/C polymorphism, either with the G/A polymorphism at nucleotide 4391 detected with Hphl or with the C/T at 4891 detected with BstEll.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098154
Author(s):  
Kan Wu ◽  
Xueqin Chen ◽  
Xufeng Chen ◽  
Shirong Zhang ◽  
Yasi Xu ◽  
...  

Objective Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has shown potential as a candidate radiosensitizer for many types of cancers. This study aimed to explore the radiosensitization mechanism of SAHA in lung cancer cells. Methods Mutations in p53 were generated by site-directed mutagenesis using polymerase chain reaction. Transfection was performed to generate H1299 cells carrying wild-type or mutant p53. The radiosensitizing enhancement ratio was determined by clonogenic assays. Mitochondrial apoptosis was detected using JC-1 staining and flow cytometry analysis. Results Our results showed that SAHA induced radiosensitization in H1299 cells expressing wild-type p53, p53R175H or p53P223L, but this enhanced clonogenic cell death was not observed in parental H1299 (p53-null) cells or H1299 cells expressing p53 with K120R, A161T and V274R mutations. In SAHA-sensitized cells, mitochondrial apoptosis was induced following exposure to irradiation. Additionally, we observed that a secondary mutation at K120 (K120R) could eliminate p53-mediated radiosensitization and mitochondrial apoptosis. Conclusions The results of this study suggest that wild-type and specific mutant forms of p53 mediate SAHA-induced radiosensitization by regulating mitochondrial apoptosis, and the stabilization of K120 acetylation by SAHA is the molecular basis contributing to radiosensitization in lung cancer cells.


Physiology ◽  
1998 ◽  
Vol 13 (3) ◽  
pp. 123-131 ◽  
Author(s):  
Angela Steel ◽  
Matthias A. Hediger

The expression of cloned Na+- and H+-coupled solute transporters in Xenopus laevis oocytes has permitted detailed molecular and biophysical analysis and illuminated unique mechanistic features. The identification of missense mutations in inherited diseases and site-directed mutagenesis studies have enhanced our understanding of their roles in physiological and pathological processes.


2003 ◽  
Vol 185 (19) ◽  
pp. 5747-5754 ◽  
Author(s):  
Annette Sauter ◽  
S. Peter Howard ◽  
Volkmar Braun

ABSTRACT TonB, in complex with ExbB and ExbD, is required for the energy-dependent transport of ferric siderophores across the outer membrane of Escherichia coli, the killing of cells by group B colicins, and infection by phages T1 and φ80. To gain insights into the protein complex, TonB dimerization was studied by constructing hybrid proteins from complete TonB (containing amino acids 1 to 239) [TonB(1-239)] and the cytoplasmic fragment of ToxR which, when dimerized, activates the transcription of the cholera toxin gene ctx. ToxR(1-182)-TonB(1-239) activated the transcription of lacZ under the control of the ctx promoter (P ctx ::lacZ). Replacement of the TonB transmembrane region by the ToxR transmembrane region resulted in the hybrid proteins ToxR(1-210)-TonB(33-239) and ToxR(1-210)-TonB(164-239), of which only the latter activated P ctx ::lacZ transcription. Dimer formation was reduced but not abolished in a mutant lacking ExbB and ExbD, suggesting that these complex components may influence dimerization but are not strictly required and that the N-terminal cytoplasmic membrane anchor and the C-terminal region are important for dimer formation. The periplasmic TonB fragment, TonB(33-239), inhibits ferrichrome and ferric citrate transport and induction of the ferric citrate transport system. This competition provided a means to positively screen for TonB(33-239) mutants which displayed no inhibition. Single point mutations of inactive fragments selected in this manner were introduced into complete TonB, and the phenotypes of the TonB mutant strains were determined. The mutations located in the C-terminal half of TonB, three of which (Y163C, V188E, and R204C) were obtained separately by site-directed mutagenesis, as was the isolated F230V mutation, were studied in more detail. They displayed different activity levels for various TonB-dependent functions, suggesting function-related specificities which reflect differences in the interactions of TonB with various transporters and receptors.


Sign in / Sign up

Export Citation Format

Share Document