scholarly journals Epigenetic therapy suppresses endocrine-resistant breast tumour growth by re-wiring ER-mediated 3D chromatin interactions

2021 ◽  
Author(s):  
Joanna Achinger-Kawecka ◽  
Clare Stirzaker ◽  
Kee-Ming Chia ◽  
Neil Portman ◽  
Elyssa Campbell ◽  
...  

Three-dimensional (3D) epigenome remodelling is emerging as an important mechanism of gene deregulation in cancer. However, its potential as a target to overcome cancer therapy resistance remains largely unaddressed. Here we show that treatment of endocrine-resistant estrogen receptor positive (ER+) breast cancer with an FDA-approved epigenetic therapy Decitabine (5-Aza-mC), results in genome-wide DNA hypomethylation and suppression of tumour growth in preclinical metastatic ER+ breast tumour xenograft models. Systematic integration of matched chromatin conformation capture (Hi-C), Promoter Capture Hi-C, RNA-seq and ER ChIP-seq data revealed widespread effects on epigenome deregulation, including de-compaction of higher order chromatin structure and loss of topologically associating domains (TAD) boundary insulation. Key enhancer ER binding sites were demethylated and re-activated after Decitabine treatment, resulting in new ER mediated enhancer-promoter interactions and concordant activation of tumour suppressive gene pathways. Importantly, we show that the activated ER target genes were also predictive of good outcome in multiple ER+ breast cancer clinical cohorts. Together our study reveals a previously undescribed mechanism of Decitabine in re-wiring DNA methylation-dependent 3D genome architecture resulting in suppression of tumour growth, and highlights the potential of epigenetic therapy in targeting ER+ endocrine-resistant breast cancer.

2019 ◽  
Vol 47 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Charlotte Roelofs ◽  
Frédéric Hollande ◽  
Richard Redvers ◽  
Robin L. Anderson ◽  
Delphine Merino

Abstract Until recently, established cancer cell lines have been used extensively in breast cancer research, due largely to the difficulties associated with the manipulation and long-term maintenance in culture of primary tumour cells from patients. The recent development of organoid cultures has provided new opportunities to model and analyse patient samples, allowing the propagation of malignant cells under conditions that resemble the three-dimensional growth of breast tumours. They have proved efficacious in preserving the heterogeneity of primary samples and are emerging as a new model to further characterise the molecular features of breast cancer. Organoids formed from patient-derived cells are now in use for the evaluation of drug sensitivity and to validate disease-causing genomic variations. Here, the advantages and limitations of organoid cultures will be discussed and compared with the parallel development of other two- and three-dimensional culture strategies and with patient-derived xenografts. In particular, we will focus on the molecular characterisation of breast cancer organoids and provide some examples of how they have been used in functional studies.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 289 ◽  
Author(s):  
Ping Hong ◽  
Hao Jiang ◽  
Weize Xu ◽  
Da Lin ◽  
Qian Xu ◽  
...  

It is becoming increasingly important to understand the mechanism of regulatory elements on target genes in long-range genomic distance. 3C (chromosome conformation capture) and its derived methods are now widely applied to investigate three-dimensional (3D) genome organizations and gene regulation. Digestion-ligation-only Hi-C (DLO Hi-C) is a new technology with high efficiency and cost-effectiveness for whole-genome chromosome conformation capture. Here, we introduce the DLO Hi-C tool, a flexible and versatile pipeline for processing DLO Hi-C data from raw sequencing reads to normalized contact maps and for providing quality controls for different steps. It includes more efficient iterative mapping and linker filtering. We applied the DLO Hi-C tool to different DLO Hi-C datasets and demonstrated its ability in processing large data with multithreading. The DLO Hi-C tool is suitable for processing DLO Hi-C and in situ DLO Hi-C datasets. It is convenient and efficient for DLO Hi-C data processing.


2016 ◽  
Vol 473 (4) ◽  
pp. 371-381 ◽  
Author(s):  
Alexey Koval ◽  
Kamal Ahmed ◽  
Vladimir L. Katanaev

Multi-purpose drug suramin is found to be active against cancer-related Wnt signalling. As a consequence of heterotrimeric G proteins suppression, suramin inhibits Wnt ligand internalization, which renders the drug active against triple-negative breast cancer (TNBC).


2020 ◽  
Vol 48 (19) ◽  
pp. 10768-10784
Author(s):  
Ge Sun ◽  
Chunyu Wang ◽  
Shengli Wang ◽  
Hongmiao Sun ◽  
Kai Zeng ◽  
...  

Abstract Estrogen receptor alpha (ERα) signaling pathway is essential for ERα-positive breast cancer progression and endocrine therapy resistance. Bromodomain PHD Finger Transcription Factor (BPTF) associated protein of 18kDa (BAP18) has been recognized as a crucial H3K4me3 reader. However, the whole genomic occupation of BAP18 and its biological function in breast cancer is still elusive. Here, we found that higher expression of BAP18 in ERα-positive breast cancer is positively correlated with poor prognosis. ChIP-seq analysis further demonstrated that the half estrogen response elements (EREs) and the CCCTC binding factor (CTCF) binding sites are the significant enrichment sites found in estrogen-induced BAP18 binding sites. Also, we provide the evidence to demonstrate that BAP18 as a novel co-activator of ERα is required for the recruitment of COMPASS-like core subunits to the cis-regulatory element of ERα target genes in breast cancer cells. BAP18 is recruited to the promoter regions of estrogen-induced genes, accompanied with the enrichment of the lysine 4-trimethylated histone H3 tail (H3K4me3) in the presence of E2. Furthermore, BAP18 promotes cell growth and associates the sensitivity of antiestrogen in ERα-positive breast cancer. Our data suggest that BAP18 facilitates the association between ERα and COMPASS-like core subunits, which might be an essential epigenetic therapeutic target for breast cancer.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zhen Li ◽  
Wei Zou ◽  
Ji Zhang ◽  
Yunjiao Zhang ◽  
Qi Xu ◽  
...  

As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor–positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer–related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.


2016 ◽  
Vol 2 (6) ◽  
pp. e1501924 ◽  
Author(s):  
Hari Singhal ◽  
Marianne E. Greene ◽  
Gerard Tarulli ◽  
Allison L. Zarnke ◽  
Ryan J. Bourgo ◽  
...  

The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5979
Author(s):  
Diana E. Baxter ◽  
Lisa M. Allinson ◽  
Waleed S. Al Amri ◽  
James A. Poulter ◽  
Arindam Pramanik ◽  
...  

Background: poor prognosis primary breast cancers are typically treated with cytotoxic chemotherapy. However, recurrences remain relatively common even after this aggressive therapy. Comparison of matched tumours pre- and post-chemotherapy can allow identification of molecular characteristics of therapy resistance and thereby potentially aid discovery of novel predictive markers or targets for chemosensitisation. Through this comparison, we aimed to identify microRNAs associated with chemoresistance, define microRNA target genes, and assess targets as predictors of chemotherapy response. Methods: cancer cells were laser microdissected from matched breast cancer tissues pre- and post-chemotherapy from estrogen receptor positive/HER2 negative breast cancers showing partial responses to epirubicin/cyclophosphamide chemotherapy (n = 5). MicroRNA expression was profiled using qPCR arrays. MicroRNA/mRNA expression was manipulated in estrogen receptor positive/HER2 negative breast cancer cell lines (MCF7 and MDA-MB-175 cells) with mimics, inhibitors or siRNAs, and chemoresponse was assessed using MTT and colony forming survival assays. MicroRNA targets were identified by RNA-sequencing of microRNA mimic pull-downs, and comparison of these with mRNAs containing predicted microRNA binding sites. Survival correlations were tested using the METABRIC expression dataset (n = 1979). Results: miR-195 and miR-26b were consistently up-regulated after therapy, and changes in their expression in cell lines caused significant differences in chemotherapy sensitivity, in accordance with up-regulation driving resistance. SEMA6D was defined and confirmed as a target of the microRNAs. Reduced SEMA6D expression was significantly associated with chemoresistance, in accordance with SEMA6D being a down-stream effector of the microRNAs. Finally, low SEMA6D expression in breast cancers was significantly associated with poor survival after chemotherapy, but not after other therapies. Conclusions: microRNAs and their targets influence chemoresponse, allowing the identification of SEMA6D as a predictive marker for chemotherapy response that could be used to direct therapy or as a target in chemosensitisation strategies.


Sign in / Sign up

Export Citation Format

Share Document