scholarly journals High-throughput single-cell TCR - pMHC dissociation rate measurements performed by an autonomous microfluidic cellular processing unit

2021 ◽  
Author(s):  
Fabien Jammes ◽  
Julien Schmidt ◽  
George Coukos ◽  
Sebastian Josef Maerkl

We developed an integrated microfluidic cellular processing unit (mCPU) capable of autonomously isolating single cells, perform, measure, and on-the-fly analyze cell-surface dissociation rates, followed by recovery of selected cells. We performed proof-of-concept, high- throughput single-cell experiments characterizing pMHC-TCR interactions on live CD8 T cells. The mCPU platform analyzed TCR-pMHC dissociation rates with a throughput of 50 cells per hour and hundreds of cells per run, and we demonstrate that cells can be selected, enriched, and easily recovered from the device.

2021 ◽  
Author(s):  
Ke-Yue Ma ◽  
Alexandra A. Schonnesen ◽  
Chenfeng He ◽  
Amanda Y. Xia ◽  
Eric Sun ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3953-3953
Author(s):  
Amy Guillaumet-Adkins ◽  
Praveen Anand ◽  
Huiyoung Yun ◽  
Yotam Drier ◽  
Anna Rogers ◽  
...  

Introduction: Early T-cell precursor acute lymphoblastic leukemia (ETP T-ALL) is a distinct subtype of T-ALL characterized by higher rates of relapse and induction failure. Large-scale genetic sequencing studies have identified frequently mutated oncogenes and gene fusions in ETP T-ALL, while bulk transcriptome analyses have revealed expression features resembling myeloid precursors and myeloid malignancies. However, the contributions of intra-tumoral functional heterogeneity and microenvironment to tumor biology and treatment failure remain unknown. Methods: We performed full-length single-cell RNA-sequencing of 5,077 malignant and normal immune cells from bone marrow or blood from five patients with relapsed/refractory ETP T-ALL (based on immunophenotyping, all with NOTCH1 mutations), before and after targeted therapy against NOTCH1. These patients were enrolled on a phase I trial with the γ-secretase inhibitor (GSI) BMS-906024 (NCT01363817). Expression of selected genes was validated by RT-PCR, flow cytometry and immunohistochemistry. Results: Single cell transcriptome analyses revealed a deranged developmental hierarchy characterized by co-expression of stemness programs in multiple malignant cells implying ineffectual commitment to either lymphoid or myeloid lineage. Most ETP T-ALL cells co-expressed HSC (hematopoietic stem cell), CMP (common myeloid progenitor) and CLP (common lymphoid progenitor) signatures simultaneously (Pearson correlation: CLP-CMP: R= 0.41, p < 2.2e-16; HSC-CLP: R= 0.53; p < 2.2e-16; HSC-CMP: R = 0.39, p <2.2e-16). Only a fraction of cells (less than 15%) demonstrated mutually exclusive CLP or HSC signatures. In contrast, CLP, CMP and HSC signatures were not co-expressed and always negatively correlated in normal bone marrow cells (CLP-CMP: R= -0.11, p < 2.2e-16; HSC-CLP: R= -0.38; p < 2.2e-16; HSC-CMP: R = -0.67, p <2.2e-16). Direct targeting of NOTCH1 as the driving oncogene has shown disappointing results in the clinical setting due to the rapid development of resistance. PI3K activation has been shown as a genetic mechanism of Notch resistance, however it is unclear if transcriptional rewiring can give rise to PI3K dependent cells after Notch inhibition. To address this question, we predicted the activity of signaling pathways in single cells after Notch inhibitor treatment using PROGENy. Most single cells demonstrated loss of Notch signaling. PI3K signaling activity was the most anti-correlated signaling pathway to Notch signaling (Pearson correlation: R= -0.51, p < 2.2e-16). Of note, this population preexisted at a frequency of ~30% in the untreated population, coexisting with cells with high Notch activation. Analysis of the immune microenvironment revealed an oligoclonal T-cell population in ETP T-ALL compared to normal donor T-cells. CD8+ T-cells from ETP patients expressed markers of T-cell exhaustion (PDCD1, TIGIT, LAG3, HAVCR2). Analyses of expression levels of the respective ligands on leukemic blasts and the predicted interaction with their receptors on endogenous CD8+ T-cells demonstrated the highest interaction score between HAVCR2 and its ligand LGALS9. LGALS9 was universally expressed in all leukemic cells, which was confirmed by flow cytometry staining in leukemic blasts and IHC staining in bone marrow of 8 patients with ETP T-ALL and 7 patients with T-ALL. T-ALL supernatant increased expression levels of the exhaustion markers HAVCR2,TIGIT and decreased effector marker GZMB in polyclonal activated normal donor CD8+ T-cells (RT-PCR). This effect was abrogated by neutralizing LGALS9 and could be rescued with recombinant LGALS9. Conclusion: We identified deranged developmental hierarchy characterized by co-expression of stemness programs in multiple malignant cell states and ineffectual commitment to either lymphoid or myeloid lineage in ETP T-ALL. Leukemic blasts demonstrate preexisting heterogeneity of diverse oncogenic states as evidenced by opposing PI3K and Notch activity, suggesting possible novel combination therapies. Notch inhibition abolishes the Notch high state without effecting the PI3K active state. Finally, we demonstrate a possible role for HAVCR2-LGALS9 interactions in causing CD8+ T-cell dysfunction in ETP T-ALL patients, which may provide a novel therapeutic strategy in this disease. Disclosures Silverman: Takeda: Consultancy; Servier: Consultancy, Research Funding. Lane:AbbVie: Research Funding; Stemline Therapeutics: Research Funding; N-of-One: Consultancy. DeAngelo:Glycomimetics: Research Funding; Amgen, Autolus, Celgene, Forty-seven, Incyte, Jazzs, Pfizer, Shire, Takeda: Consultancy; Blueprint: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Abbvie: Research Funding. Lohr:Celgene: Research Funding; T2 Biosystems: Honoraria.


2021 ◽  
Author(s):  
Ke-Yue Ma ◽  
Alexandra A Schonnesen ◽  
Chenfeng He ◽  
Amanda Y Xia ◽  
Eric Sun ◽  
...  

Although critical to T cell function, antigen specificity is often omitted in high-throughput multi-omics based T cell profiling due to technical challenges. We describe a high-dimensional, tetramer-associated T cell receptor sequencing (TetTCR-SeqHD) method to simultaneously profile TCR sequences, cognate antigen specificities, targeted gene-expression, and surface-protein expression from tens of thousands of single cells. Using polyclonal CD8+ T cells with known antigen specificity and TCR sequences, we demonstrated over 98% precision for detecting the correct antigen specificity. We also evaluated gene-expression and phenotypic differences among antigen-specific CD8+ T cells and characterized phenotype signatures of influenza- and EBV-specific CD8+ T cells that are unique to their pathogen targets. Moreover, with the high-throughput capacity of profiling hundreds of antigens simultaneously, we applied TetTCR-SeqHD to identify antigens that preferentially enrich cognate CD8+ T cells in type 1 diabetes patients compared to healthy controls, and discovered a TCR that cross reacts between diabetic and microbiome antigens. TetTCR-SeqHD is a powerful approach for profiling T cell responses.


2021 ◽  
Author(s):  
Evan S Walsh ◽  
Tammy Tollison ◽  
Hayden Brochu ◽  
Brian Shaw ◽  
Kayliegh Diveley ◽  
...  

Recent advancements in microfluidics and high-throughput sequencing technologies have enabled recovery of paired heavy- and light- chains of immunoglobulins (Ig) and VDJ- and VJ- chains of T cell receptors (TCR) from thousands of single cells simultaneously in humans and mice. Despite rhesus macaques being one of the most well-studied model organisms for the human adaptive immune response, high-throughput single cell immune repertoire sequencing assays are not yet available due to the complexity of these polyclonal receptors. Here we employed custom primers that capture all known rhesus macaque Ig and TCR isotypes and chains that are fully compatible with a commercial solution for single cell immune repertoire profiling. Using these rhesus specific assays, we sequenced Ig and TCR repertoires in over 60,000 cells from cryopreserved rhesus PBMC, splenocytes, and FACS-sorted B and T cells. We were able to recover every Ig isotype and TCR chain, measure clonal expansion in proliferating T cells, and pair Ig and TCR repertoires with gene expression profiles of the same single cells. Our results establish the ability to perform high-throughput immune repertoire analysis in rhesus macaques at the single cell level.


2021 ◽  
Vol 9 (7) ◽  
pp. e002595
Author(s):  
Yong-Chen Lu ◽  
Zhili Zheng ◽  
Frank J Lowery ◽  
Jared J Gartner ◽  
Todd D Prickett ◽  
...  

BackgroundRecognition of neoantigens by T cells plays a major role in cancer immunotherapy. Identification of neoantigen-specific T-cell receptors (TCRs) has become a critical research tool for studying T cell-mediated responses after immunotherapy. In addition, neoantigen-specific TCRs can be used to modify the specificity of T cells for T cell-based therapies targeting tumor-specific mutations. Although several techniques have been developed to identify TCR sequences, these techniques still require a significant amount of labor, making them impractical in the clinical setting.MethodsThanks to the availability of high-throughput single-cell sequencing, we developed a new process to isolate neoantigen-specific TCR sequences. This process included the isolation of tumor-infiltrating T cells from a tumor specimen and the stimulation of T cells by neoantigen-loaded dendritic cells, followed by single-cell sequencing for TCR and T-cell activation markers, interferon-γ and interleukin-2.ResultsIn this study, potential neoantigen-specific TCRs were isolated from three melanoma and three colorectal tumor specimens. These TCRs were then synthesized and transduced into autologous T cells, followed by testing the recognition of neoantigens. A total of 28 neoantigen-specific TCRs were identified by this process. If identical TCR sequences were detected from two or more single cells, this approach was highly reliable (100%, 19 out of 19 TCRs).ConclusionThis single-cell approach provides an efficient process to isolate antigen-specific TCRs for research and clinical applications.


2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


Nature ◽  
2021 ◽  
Author(s):  
Justina X. Caushi ◽  
Jiajia Zhang ◽  
Zhicheng Ji ◽  
Ajay Vaghasia ◽  
Boyang Zhang ◽  
...  

AbstractPD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a ‘barcode’ to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein–Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Sign in / Sign up

Export Citation Format

Share Document