scholarly journals Knock-in tagging in zebrafish facilitated by insertion into non-coding regions

2021 ◽  
Author(s):  
Daniel S Levic ◽  
Naoya Yamaguchi ◽  
Siyao Wang ◽  
Holger Knaut ◽  
Michel Bagnat

Zebrafish provide an excellent model for in vivo cell biology studies due to their amenability to live imaging. Protein visualization in zebrafish has traditionally relied on overexpression of fluorescently tagged proteins from heterologous promoters, making it difficult to recapitulate endogenous expression patterns and protein function. One way to circumvent this problem is to tag the proteins by modifying their endogenous genomic loci. Such an approach is not widely available to zebrafish researchers due to inefficient homologous recombination and the error-prone nature of targeted integration in zebrafish. Here, we report a simple approach for tagging proteins in zebrafish on their N- or C termini with fluorescent markers by inserting PCR-generated donor amplicons into non-coding regions of the corresponding genes. Using this approach, we generated endogenously tagged alleles for several genes critical for epithelial biology and organ development including the tight junction components ZO-1 and Cldn15la, the trafficking effector Rab11a, and the ECM receptor β1 integrin. Our approach facilitates the generation of knock-in lines in zebrafish, opening the way for accurate quantitative imaging studies.

Development ◽  
2021 ◽  
Author(s):  
Daniel S. Levic ◽  
Naoya Yamaguchi ◽  
Siyao Wang ◽  
Holger Knaut ◽  
Michel Bagnat

Zebrafish provide an excellent model for in vivo cell biology studies due to their amenability to live imaging. Protein visualization in zebrafish has traditionally relied on overexpression of fluorescently tagged proteins from heterologous promoters, making it difficult to recapitulate endogenous expression patterns and protein function. One way to circumvent this problem is to tag the proteins by modifying their endogenous genomic loci. Such an approach is not widely available to zebrafish researchers due to inefficient homologous recombination and the error-prone nature of targeted integration in zebrafish. Here, we report a simple approach for tagging proteins in zebrafish on their N- or C termini with fluorescent proteins by inserting PCR-generated donor amplicons into non-coding regions of the corresponding genes. Using this approach, we generated endogenously tagged alleles for several genes critical for epithelial biology and organ development including the tight junction components ZO-1 and Cldn15la, the trafficking effector Rab11a, the apical polarity protein aPKC, and the ECM receptor Integrin β1b. Our approach facilitates the generation of knock-in lines in zebrafish, opening the way for accurate quantitative imaging studies.


2015 ◽  
Vol 112 (22) ◽  
pp. 6855-6862 ◽  
Author(s):  
Loyal A. Goff ◽  
Abigail F. Groff ◽  
Martin Sauvageau ◽  
Zachary Trayes-Gibson ◽  
Diana B. Sanchez-Gomez ◽  
...  

Long noncoding RNAs (lncRNAs) have been implicated in numerous cellular processes including brain development. However, the in vivo expression dynamics and molecular pathways regulated by these loci are not well understood. Here, we leveraged a cohort of 13 lncRNA-null mutant mouse models to investigate the spatiotemporal expression of lncRNAs in the developing and adult brain and the transcriptome alterations resulting from the loss of these lncRNA loci. We show that several lncRNAs are differentially expressed both in time and space, with some presenting highly restricted expression in only selected brain regions. We further demonstrate altered regulation of genes for a large variety of cellular pathways and processes upon deletion of the lncRNA loci. Finally, we found that 4 of the 13 lncRNAs significantly affect the expression of several neighboring protein-coding genes in a cis-like manner. By providing insight into the endogenous expression patterns and the transcriptional perturbations caused by deletion of the lncRNA locus in the developing and postnatal mammalian brain, these data provide a resource to facilitate future examination of the specific functional relevance of these genes in neural development, brain function, and disease.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Wan Yun Ho ◽  
Ira Agrawal ◽  
Sheue-Houy Tyan ◽  
Emma Sanford ◽  
Wei-Tang Chang ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of the same disease spectrum of adult-onset neurodegenerative diseases that affect the motor and cognitive functions, respectively. Multiple common genetic loci such as fused in sarcoma (FUS) have been identified to play a role in ALS and FTD etiology. Current studies indicate that FUS mutations incur gain-of-toxic functions to drive ALS pathogenesis. However, how the disease-linked mutations of FUS affect cognition remains elusive. Using a mouse model expressing an ALS-linked human FUS mutation (R514G-FUS) that mimics endogenous expression patterns, we found that FUS proteins showed an age-dependent accumulation of FUS proteins despite the downregulation of mouse FUS mRNA by the R514G-FUS protein during aging. Furthermore, these mice developed cognitive deficits accompanied by a reduction in spine density and long-term potentiation (LTP) within the hippocampus. At the physiological expression level, mutant FUS is distributed in the nucleus and cytosol without apparent FUS aggregates or nuclear envelope defects. Unbiased transcriptomic analysis revealed a deregulation of genes that cluster in pathways involved in nonsense-mediated decay, protein homeostasis, and mitochondrial functions. Furthermore, the use of in vivo functional imaging demonstrated widespread reduction in cortical volumes but enhanced functional connectivity between hippocampus, basal ganglia and neocortex in R514G-FUS mice. Hence, our findings suggest that disease-linked mutation in FUS may lead to changes in proteostasis and mitochondrial dysfunction that in turn affect brain structure and connectivity resulting in cognitive deficits.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Smita Cherry ◽  
Eugene Jennifer Jin ◽  
Mehmet Neset Özel ◽  
Zhiyuan Lu ◽  
Egemen Agi ◽  
...  

The small GTPase Rab7 is a key regulator of endosomal maturation in eukaryotic cells. Mutations in rab7 are thought to cause the dominant neuropathy Charcot-Marie-Tooth 2B (CMT2B) by a gain-of-function mechanism. Here we show that loss of rab7, but not overexpression of rab7 CMT2B mutants, causes adult-onset neurodegeneration in a Drosophila model. All CMT2B mutant proteins retain 10–50% function based on quantitative imaging, electrophysiology, and rescue experiments in sensory and motor neurons in vivo. Consequently, expression of CMT2B mutants at levels between 0.5 and 10-fold their endogenous levels fully rescues the neuropathy-like phenotypes of the rab7 mutant. Live imaging reveals that CMT2B proteins are inefficiently recruited to endosomes, but do not impair endosomal maturation. These findings are not consistent with a gain-of-function mechanism. Instead, they indicate a dosage-dependent sensitivity of neurons to rab7-dependent degradation. Our results suggest a therapeutic approach opposite to the currently proposed reduction of mutant protein function.


Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4685-4692 ◽  
Author(s):  
Yoshio Ohyama ◽  
Akira Nifuji ◽  
Yukiko Maeda ◽  
Teruo Amagasa ◽  
Masaki Noda

Abstract Sclerostin (SOST), a member of the cystine-knot superfamily, is essential for proper skeletogenesis because a loss-of-function mutation in the SOST gene results in sclerosteosis featured with massive bone growth in humans. To understand the function of SOST in developmental skeletal tissue formation, we examined SOST gene expression in embryonic osteogenesis in vitro and in vivo. During osteoblastic differentiation in primary calvarial cells, the levels of SOST expression were increased along with those of alkaline phosphatase activity and nodule formation. In situ hybridization study revealed that SOST mRNA expression was observed in the digits in embryonic 13-d limb buds, and SOST expression was observed in osteogenic front in embryonic 16.5-d postcoitus embryonic calvariae, and this expression persisted in the peripheral area of cranial bone in the later developmental stage (embryonic 18.5-d post coitum). These temporal and spacial expression patterns in vivo and in vitro were in parallel to those of osterix (Osx), which is a critical transcriptional factor for bone formation. Similar coexpression of SOST and Osx mRNA was observed when the primary osteoblastic calvarial cells were cultured in the presence of bone morphogenetic protein (BMP)2 in vitro. Moreover, endogenous expression of SOST and Osx mRNA was inhibited by infection of noggin-expression adenovirus into the primary osteoblastic calvarial cells, suggesting that endogenous BMPs are required for these cells to express SOST and Osx mRNA. Thus, expression and regulation of SOST under the control of BMP were closely associated with those of Osx in vivo and in vitro.


2001 ◽  
Vol 17 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Douglas T. Ross ◽  
Charles M. Perou

Cell lines derived from human tumors have historically served as the primary experimental model system for exploration of tumor cell biology and pharmacology. Cell line studies, however, must be interpreted in the context of artifacts introduced by selection and establishment of cell linesin vitro. This complication has led to difficulty in the extrapolation of biology observed in cell lines to tumor biologyin vivo. Modern genomic analysis tool like DNA microarrays and gene expression profiling now provide a platform for the systematic characterization and classification of both cell lines and tumor samples. Studies using clinical samples have begun to identify classes of tumors that appear both biologically and clinically unique as inferred from their distinctive patterns of expressed genes. In this review, we explore the relationships between patterns of gene expression in breast tumor derived cell lines to those from clinical tumor specimens. This analysis demonstrates that cell lines and tumor samples have distinctive gene expression patterns in common and underscores the need for careful assessment of the appropriateness of any given cell line as a model for a given tumor subtype.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Christian Tiede ◽  
Robert Bedford ◽  
Sophie J Heseltine ◽  
Gina Smith ◽  
Imeshi Wijetunga ◽  
...  

Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.


Author(s):  
Ronald D. Edstrom ◽  
Xiuru Yang ◽  
Mary E. Gurnack ◽  
Marcia A. Miller ◽  
Rui Yang ◽  
...  

Many of the questions in biochemistry and cell biology are concerned with the relationships of proteins and other macromolecules in complex arrays which are responsible for carrying out metabolic sequences. The simplistic notion that the enzymes we isolate in soluble form from the cytoplasm were also soluble in vivo is being replaced by the concept that these enzymes occur in organized systems within the cell. In this newer view, the cytoplasm is organized and the “soluble enzymes” are in fact fixed in the cellular space and the only soluble components of the cell are small metabolites, inorganic ions etc. Further support for the concept of metabolic organization is provided by the evidence of metabolic channeling. It has been shown that for some metabolic pathways, the intermediates are not in free diffusion equilibrium with the bulk liquid in the cell but are passed along, more or less directly, from one enzyme to the next.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Sign in / Sign up

Export Citation Format

Share Document